Estimates for the Kolmogorov widths of an intersection of two balls in a mixed norm
Sbornik. Mathematics, Tome 215 (2024) no. 1, pp. 74-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Order estimates are obtained for the Kolmogorov widths of intersections of two finite-dimensional balls in the mixed norm under certain conditions on parameters. Bibliography: 27 titles.
Keywords: Kolmogorov widths, intersection of finite-dimensional balls.
@article{SM_2024_215_1_a3,
     author = {A. A. Vasil'eva},
     title = {Estimates for the {Kolmogorov} widths of an intersection of two balls in a~mixed norm},
     journal = {Sbornik. Mathematics},
     pages = {74--89},
     year = {2024},
     volume = {215},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_1_a3/}
}
TY  - JOUR
AU  - A. A. Vasil'eva
TI  - Estimates for the Kolmogorov widths of an intersection of two balls in a mixed norm
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 74
EP  - 89
VL  - 215
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_1_a3/
LA  - en
ID  - SM_2024_215_1_a3
ER  - 
%0 Journal Article
%A A. A. Vasil'eva
%T Estimates for the Kolmogorov widths of an intersection of two balls in a mixed norm
%J Sbornik. Mathematics
%D 2024
%P 74-89
%V 215
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2024_215_1_a3/
%G en
%F SM_2024_215_1_a3
A. A. Vasil'eva. Estimates for the Kolmogorov widths of an intersection of two balls in a mixed norm. Sbornik. Mathematics, Tome 215 (2024) no. 1, pp. 74-89. http://geodesic.mathdoc.fr/item/SM_2024_215_1_a3/

[1] V. M. Tikhomirov, Some questions in approximation theory, Publishing house of Moscow University, Moscow, 1976, 304 pp. (Russian) | MR

[2] V. M. Tikhomirov, “Approximation theory”, Analysis, v. II, Encyclopaedia Math. Sci., 14, Convex analysis and approximation theory, Springer-Verlag, Berlin, 1990, 93–243 | DOI | MR | Zbl

[3] A. Pinkus, $n$-widths in approximation theory, Ergeb. Math. Grenzgeb. (3), 7, Springer-Verlag, Berlin, 1985, x+291 pp. | DOI | MR | Zbl

[4] A. Pietsch, “$s$-numbers of operators in Banach spaces”, Studia Math., 51 (1974), 201–223 | DOI | MR | Zbl

[5] M. I. Stesin, “Aleksandrov diameters of finite-dimensional sets and classes of smooth functions”, Soviet Math. Dokl., 16 (1975), 252–256 | MR | Zbl

[6] A. N. Kolmogorov, A. A. Petrov and Yu. M. Smirnov, “A formula of Gauss in the theory of the method of least squares”, Izv. Akad. Nauk SSSR Ser. Mat., 11:6 (1947), 561–566 (Russian) | MR | Zbl

[7] S. B. Stechkin, “On a best approximation of prescribed function classes by arbitrary polynomials”, in: “Proceeding of the Moscow Mathematical Society”, Uspekhi Mat. Nauk, 9:1(59) (1954), 133–134 (Russian)

[8] E. D. Gluskin, “Some finite-dimensional problems in the theory of widths”, Vestn. Leningr. Univ., 13 (1981), 5–10 (Russian) | Zbl

[9] E. D. Gluskin, “Norms of random matrices and widths of finite-dimensional sets”, Math. USSR-Sb., 48:1 (1984), 173–182 | DOI | MR | Zbl

[10] B. S. Kashin, “The widths of octahedra”, Uspekhi Mat. Nauk, 30:4(184) (1975), 251–252 (Russian) | MR | Zbl

[11] B. S. Kašin (Kashin), “Diameters of some finite-dimensional sets and classes of smooth functions”, Math. USSR-Izv., 11:2 (1977), 317–333 | DOI | MR | Zbl

[12] A. Yu. Garnaev and E. D. Gluskin, “On widths of the Euclidean ball”, Soviet Math. Dokl., 30:1 (1984), 200–204 | MR | Zbl

[13] È. M. Galeev, “Widths of function classes and finite-dimensional sets”, Vladikavkaz. Mat. Zh., 13:2 (2011), 3–14 (Russian) | MR | Zbl

[14] S. Dirksen and T. Ullrich, “Gelfand numbers related to structured sparsity and Besov space embeddings with small mixed smoothness”, J. Complexity, 48 (2018), 69–102 | DOI | MR | Zbl

[15] J. Vybíral, “Function spaces with dominating mixed smoothness”, Dissertationes Math., 436 (2006), 1–73 | DOI | MR | Zbl

[16] A. A. Vasil'eva, “Kolmogorov and linear widths of the weighted Besov classes with singularity at the origin”, J. Approx. Theory, 167 (2013), 1–41 | DOI | MR | Zbl

[17] È. M. Galeev, “Kolmogorov widths of classes of periodic functions of one and several variables”, Math. USSR-Izv., 36:2 (1991), 435–448 | DOI | MR | Zbl

[18] E. M. Galeev, “Kolmogorov $n$-width of some finite-dimensional sets in a mixed measure”, Math. Notes, 58:1 (1995), 774–778 | DOI | MR | Zbl

[19] A. D. Izaak, “Kolmogorov widths in finite-dimensional spaces with mixed norms”, Math. Notes, 55:1 (1994), 30–36 | DOI | MR | Zbl

[20] A. D. Izaak, “Widths of Hölder–Nikol'skii classes and finite-dimensional subsets in spaces with mixed norm”, Math. Notes, 59:3 (1996), 328–330 | DOI | MR | Zbl

[21] Yu. V. Malykhin and K. S. Ryutin, “The product of octahedra is badly approximated in the $\ell_{2,1}$-metric”, Math. Notes, 101:1 (2017), 94–99 | DOI | MR | Zbl

[22] A. D. Ioffe and V. M. Tikhomirov, “Duality of convex functions and extremum problems”, Russian Math. Surveys, 23:6 (1968), 53–124 | DOI | MR | Zbl

[23] È. M. Galeev, “Estimate for the Kolmogorov widths of the classes $H_p^r$ of periodic functions of several variables with low smoothness”, Theory of functions and its applications (Moscow State University 1985), Publishing house of Moscow University, Moscow, 1986, 17–24 (Russian)

[24] È. M. Galeev, “The Kolmogorov diameter of the intersection of classes of periodic functions and of finite-dimensional sets”, Math. Notes, 29:5 (1981), 382–388 | DOI | MR | Zbl

[25] A. A. Vasil'eva, “Kolmogorov widths of an intersection of a finite family of Sobolev classes”, Izv. Ross. Akad. Nauk Ser. Mat., 88:1 (2024), 18–42 | DOI

[26] A. A. Vasil'eva, “Kolmogorov widths of intersections of finite-dimensional balls”, J. Complexity, 72 (2022), 101649, 15 pp. | DOI | MR | Zbl

[27] A. A. Vasil'eva, “Kolmogorov widths of the intersection of two finite-dimensional balls in a mixed norm”, Math. Notes, 113:4 (2023), 584–586 | DOI | MR | Zbl