@article{SM_2024_215_1_a2,
author = {D. V. Valovik and S. V. Tikhov},
title = {Existence of solutions of a~nonlinear eigenvalue problem and their properties},
journal = {Sbornik. Mathematics},
pages = {52--73},
year = {2024},
volume = {215},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_1_a2/}
}
D. V. Valovik; S. V. Tikhov. Existence of solutions of a nonlinear eigenvalue problem and their properties. Sbornik. Mathematics, Tome 215 (2024) no. 1, pp. 52-73. http://geodesic.mathdoc.fr/item/SM_2024_215_1_a2/
[1] D. V. Valovik, “On a nonlinear eigenvalue problem related to the theory of propagation of electromagnetic waves”, Differ. Equ., 54:2 (2018), 165–177 | DOI | MR | Zbl
[2] V. Kurseeva, M. Moskaleva and D. Valovik, “Asymptotical analysis of a nonlinear Sturm–Liouville problem: linearisable and non-linearisable solutions”, Asymptot. Anal., 119:1–2 (2020), 39–59 | DOI | MR | Zbl
[3] S. V. Tikhov and D. V. Valovik, “Nonlinearizable solutions in an eigenvalue problem for Maxwell's equations with nonhomogeneous nonlinear permittivity in a layer”, Stud. Appl. Math., 149:3 (2022), 565–587 | DOI | MR
[4] L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media, Course of Theoretical Physics, 8, Pergamon Press, Oxford, 1984, xiii+460 pp. | MR
[5] N. N. Akhmediev and A. Ankiewicz, Solitons, Fizmatlit, Moscow, 2003, 304 pp. (Russian)
[6] T. Cazenave, Semilinear Schrödinger equations, Courant Lect. Notes Math., 10, New York Univ., Courant Inst. Math. Sci., New York; Amer. Math. Soc., Providence, RI, 2003, xiv+323 pp. | DOI | MR | Zbl
[7] G. Fibich, The nonlinear Schrödinger equation. Singular solutions and optical collapse, Appl. Math. Sci., 192, Springer, Cham, 2015, xxxii+862 pp. | DOI | MR | Zbl
[8] P. E. Zhidkov, “Riesz basis property of the system of eigenfunctions for a non-linear problem of Sturm–Liouville type”, Sb. Math., 191:3 (2000), 359–368 | DOI | MR | Zbl
[9] B. M. Levitan and I. S. Sargsjan, Sturm–Liouville and Dirac operators, Math. Appl. (Soviet Ser.), 59, Kluwer Acad. Publ., Dordrecht, 1991, xii+350 pp. | DOI | MR | Zbl
[10] V. A. Marchenko, Spectral theory of Sturm–Liouville operators, Naukova Dumka, Kiev, 1972, 219 pp. (Russian) | MR | Zbl
[11] D. Sansone, Equazioni differenziali nel campo reale, v. 1, 2nd ed., N. Zanichelli, Bologna, 1948, xvii+400 pp. | MR | Zbl
[12] R. Courant and D. Hilbert, Methoden der mathematischen Physik, Grundlehren Math. Wiss., I, 2. verb. Aufl., J. Springer, Berlin, 1931, xiv+469 pp. | MR | Zbl
[13] I. G. Petrovskii, Ordinary differential equations, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1966, x+232 pp. | MR | MR | Zbl | Zbl
[14] F. G. Tricomi, Differential equations, Hafner Publishing Co., New York; Blackie Son Ltd., London, 1961, x+273 pp. | MR | Zbl
[15] Yu. G. Smirnov and D. V. Valovik, “Reply to “Comment on ‘Guided electromagnetic waves propagating in a plane dielectric waveguide with nonlinear permittivity’ ” ”, Phys. Rev. A (3), 92:5 (2015), 057804, 2 pp. | DOI
[16] M. A. Naimark, Linear differential operators, v. I, II, Frederick Ungar Publishing Co., New York, 1967, 1968, xiii+144 pp., xv+352 pp. | MR | MR | Zbl
[17] L. S. Pontryagin, Ordinary differential equations, ADIWES Int. Ser. in Math., Addison-Wesley Publishing Co., Inc., Reading, MA–Palo Alto, CA–London, 1962, vi+298 pp. | MR | Zbl
[18] D. V. Valovik, “On the integral characteristic function of the Sturm–Liouville problem”, Sb. Math., 211:11 (2020), 1539–1550 | DOI | MR | Zbl
[19] D. V. Valovik and G. V. Chalyshov, “Integral characteristic function of a nonlinear Sturm–Liouville problem”, Differ. Equ., 57:12 (2021), 1555–1564 | DOI | MR | Zbl
[20] H. W. Schürmann, Y. Smirnov and Y. Shestopalov, “Propagation of TE waves in cylindrical nonlinear dielectric waveguides”, Phys. Rev. E (3), 71:1 (2005), 016614, 10 pp. | DOI