Mots-clés : Hausdorff distance
@article{SM_2024_215_1_a1,
author = {V. I. Bogachev and S. N. Popova},
title = {Hausdorff distances between couplings and optimal transportation},
journal = {Sbornik. Mathematics},
pages = {28--51},
year = {2024},
volume = {215},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_1_a1/}
}
V. I. Bogachev; S. N. Popova. Hausdorff distances between couplings and optimal transportation. Sbornik. Mathematics, Tome 215 (2024) no. 1, pp. 28-51. http://geodesic.mathdoc.fr/item/SM_2024_215_1_a1/
[1] K. A. Afonin and V. I. Bogachev, “Kantorovich type topologies on spaces of measures and convergence of barycenters”, Commun. Pure Appl. Anal., 22:2 (2023), 597–612 | DOI | MR | Zbl
[2] J.-J. Alibert, G. Bouchitté and T. Champion, “A new class of costs for optimal transport planning”, European J. Appl. Math., 30:6 (2019), 1229–1263 | DOI | MR | Zbl
[3] L. Ambrosio, E. Brué and D. Semola, Lectures on optimal transport, Unitext, 130, La Mat. per il 3+2, Springer, Cham, 2021, ix+250 pp. | DOI | MR | Zbl
[4] L. Ambrosio and N. Gigli, “A user's guide to optimal transport”, Modelling and optimisation of flows on networks, Lecture Notes in Math., 2062, Fond. CIME/CIME Found. Subser., Springer, Heidelberg, 2013, 1–155 | DOI | MR | Zbl
[5] L. Ambrosio and A. Pratelli, “Existence and stability results in the $L^1$ theory of optimal transportation”, Optimal transportation and applications (Martina Franca 2001), Lecture Notes in Math., 1813, Springer, Berlin, 2003, 123–160 | DOI | MR | Zbl
[6] M. L. Avendaño-Garrido, J. R. Gabriel-Argüelles, L.-T. Quintana and J. González-Hernández, “An approximation scheme for the Kantorovich–Rubinstein problem on compact spaces”, J. Numer. Math., 26:2 (2018), 63–75 | DOI | MR | Zbl
[7] J. Backhoff-Veraguas, M. Beiglböck and G. Pammer, “Existence, duality, and cyclical monotonicity for weak transport costs”, Calc. Var. Partial Differential Equations, 58:6 (2019), 203, 28 pp. | DOI | MR | Zbl
[8] J. Backhoff-Veraguas and G. Pammer, “Applications of weak transport theory”, Bernoulli, 28:1 (2022), 370–394 | DOI | MR | Zbl
[9] J. Bergin, “On the continuity of correspondences on sets of measures with restricted marginals”, Econom. Theory, 13:2 (1999), 471–481 | DOI | MR | Zbl
[10] S. Bobkov and M. Ledoux, One-dimensional empirical measures, order statistics, and Kantorovich transport distances, Mem. Amer. Math. Soc., 261, no. 1259, Amer. Math. Soc., Providence, RI, 2019, v+126 pp. | DOI | MR | Zbl
[11] V. I. Bogachev, Measure theory, v. I, II, Springer-Verlag, Berlin, 2007, xviii+500 pp., xiv+575 pp. | DOI | MR | Zbl
[12] V. I. Bogachev, Weak convergence of measures, Math. Surveys Monogr., 234, Amer. Math. Soc., Providence, RI, 2018, xii+286 pp. | DOI | MR | Zbl
[13] V. I. Bogachev, “Kantorovich problem of optimal transportation of measures: new directions of research”, Russian Math. Surveys, 77:5 (2022), 769–817 | DOI | DOI | MR | Zbl
[14] V. I. Bogachev, “Kantorovich problems with a parameter and density constraints”, Siberian Math. J., 63:1 (2022), 34–47 | DOI | DOI | MR | Zbl
[15] V. I. Bogachev, A. N. Doledenok and I. I. Malofeev, “The Kantorovich problem with a parameter and density constraints”, Math. Notes, 110:6 (2021), 952–955 | DOI | DOI | MR | Zbl
[16] V. I. Bogachev, A. N. Kalinin and S. N. Popova, “On the equality of values in the Monge and Kantorovich problems”, J. Math. Sci. (N.Y.), 238:4 (2019), 377–389 | DOI | MR | Zbl
[17] V. I. Bogachev and A. V. Kolesnikov, “The Monge–Kantorovich problem: achievements, connections, and perspectives”, Russian Math. Surveys, 67:5 (2012), 785–890 | DOI | DOI | MR | Zbl
[18] V. I. Bogachev and I. I. Malofeev, “Kantorovich problems and conditional measures depending on a parameter”, J. Math. Anal. Appl., 486:1 (2020), 123883, 30 pp. | DOI | MR | Zbl
[19] V. I. Bogachev and S. N. Popova, “On Kantorovich problems with a parameter”, Dokl. Math., 106:3 (2022), 426–428 | DOI | DOI | MR | Zbl
[20] V. I. Bogachev and A. V. Rezbaev, “Existence of solutions to the nonlinear Kantorovich transportation problem”, Math. Notes, 112:3 (2022), 369–377 | DOI | DOI | MR | Zbl
[21] B. Bonnet and H. Frankowska, “Differential inclusions in Wasserstein spaces: the Cauchy–Lipschitz framework”, J. Differential Equations, 271 (2021), 594–637 | DOI | MR | Zbl
[22] C. Clason, D. A. Lorenz, H. Mahler and B. Wirth, “Entropic regularization of continuous optimal transport problems”, J. Math. Anal. Appl., 494:1 (2021), 124432, 22 pp. | DOI | MR | Zbl
[23] J. Dedecker, C. Prieur and P. Raynaud De Fitte, “Parametrized Kantorovich–Rubinštein theorem and application to the coupling of random variables”, Dependence in probability and statistics, Lect. Notes Stat., 187, Springer, New York, 2006, 105–121 | DOI | MR | Zbl
[24] L. De Pascale, J. Louet and F. Santambrogio, “The Monge problem with vanishing gradient penalization: vortices and asymptotic profile”, J. Math. Pures Appl. (9), 106:2 (2016), 237–279 | DOI | MR | Zbl
[25] A. Figalli and F. Glaudo, An invitation to optimal transport, Wasserstein distances, and gradient flows, EMS Textbk. Math., EMS Press, Berlin, 2021, vi+136 pp. | DOI | MR | Zbl
[26] M. Ghossoub and D. Saunders, “On the continuity of the feasible set mapping in optimal transport”, Econ. Theory Bull., 9:1 (2021), 113–117 | DOI | MR | Zbl
[27] N. Gozlan, C. Roberto, P.-M. Samson and P. Tetali, “Kantorovich duality for general transport costs and applications”, J. Funct. Anal., 273:11 (2017), 3327–3405 | DOI | MR | Zbl
[28] S. Graf and H. Luschgy, Foundations of quantization for probability distributions, Lecture Notes in Math., 1730, Springer-Verlag, Berlin, 2000, x+230 pp. | DOI | MR | Zbl
[29] M. Katětov, “On real-valued functions in topological spaces”, Fund. Math., 38 (1951), 85–91 ; “Correction”, 40 (1953), 203–205 | DOI | MR | Zbl | DOI | MR | Zbl
[30] S. Kuksin, V. Nersesyan and A. Shirikyan, “Exponential mixing for a class of dissipative PDEs with bounded degenerate noise”, Geom. Funct. Anal., 30:1 (2020), 126–187 | DOI | MR | Zbl
[31] D. A. Lorenz, P. Manns and C. Meyer, “Quadratically regularized optimal transport”, Appl. Math. Optim., 83:3 (2021), 1919–1949 | DOI | MR | Zbl
[32] I. I. Malofeev, “Measurable dependence of conditional measures on a parameter”, Dokl. Math., 94:2 (2016), 493–497 | DOI | DOI | MR | Zbl
[33] E. Michael, “Continuous selections. I”, Ann. of Math. (2), 63:2 (1956), 361–382 | DOI | MR | Zbl
[34] E. Michael, “A selection theorem”, Proc. Amer. Math. Soc., 17 (1966), 1404–1406 | DOI | MR | Zbl
[35] A. Pratelli, “On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation”, Ann. Inst. Henri Poincaré Probab. Stat., 43:1 (2007), 1–13 | DOI | MR | Zbl
[36] S. T. Rachev and L. Rüschendorf, Mass transportation problems, v. I, Probab. Appl. (N.Y.), Theory, Springer-Verlag, New York, 1998, xxvi+508 pp. ; v. II, Applications, xxvi+430 pp. | DOI | MR | Zbl | DOI | MR
[37] D. Ramachandran and L. Rüschendorf, “A general duality theorem for marginal problems”, Probab. Theory Related Fields, 101:3 (1995), 311–319 | DOI | MR | Zbl
[38] D. Repovš and P. V. Semenov, Continuous selections of multivalued mappings, Math. Appl., 455, Kluwer Acad. Publ., Dordrecht, 1998, viii+356 pp. | DOI | MR | Zbl
[39] F. Santambrogio, Optimal transport for applied mathematicians. Calculus of variations, PDEs, and modeling, Progr. Nonlinear Differential Equations Appl., 87, Birkhäuser/Springer, Cham, 2015, xxvii+353 pp. | DOI | MR | Zbl
[40] A. Savchenko and M. Zarichnyi, “Correspondences of probability measures with restricted marginals”, Proc. Intern. Geom. Center, 7:4 (2014), 34–39 | DOI
[41] A. M. Vershik, P. B. Zatitskiy and F. V. Petrov, “Geometry and dynamics of admissible metrics in measure spaces”, Cent. Eur. J. Math., 11:3 (2013), 379–400 | DOI | MR | Zbl
[42] C. Villani, Topics in optimal transportation, Grad. Stud. Math., 58, Amer. Math. Soc., Providence, RI, 2003, xvi+370 pp. | DOI | MR | Zbl
[43] C. Villani, Optimal transport. Old and new, Grundlehren Math. Wiss., 338, Springer, New York, 2009, xxii+973 pp. | DOI | MR | Zbl
[44] D. Vögler, “Geometry of Kantorovich polytopes and support of optimizers for repulsive multi-marginal optimal transport on finite state spaces”, J. Math. Anal. Appl., 502:1 (2021), 125147, 31 pp. | DOI | MR | Zbl
[45] Feng-Yu Wang and Jie-Xiang Zhu, “Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds”, Ann. Inst. Henri Poincaré Probab. Stat., 59:1 (2023), 437–475 | DOI | MR | Zbl
[46] Xicheng Zhang, “Stochastic Monge–Kantorovich problem and its duality”, Stochastics, 85:1 (2013), 71–84 | DOI | MR | Zbl