Diffuse orthogonally additive operators
Sbornik. Mathematics, Tome 215 (2024) no. 1, pp. 1-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A regular orthogonally additive operator is a diffuse operator if it is disjoint from all operators in the band generated by the disjointness preserving operators. We present a criterion for principal lateral projections in an order complete vector lattice $E$ to be disjoint. We also state a criterion for a regular orthogonally additive operator to be diffuse. A criterion for the regularity of an integral Urysohn operator acting on ideal spaces of measurable functions is also presented. This criterion is used to show that an integral operator is diffuse. Examples of vector lattices are considered in which the sets of diffuse operators consist only of the zero element. The general form of an order projection operator onto the band generated by the disjointness preserving operators is found. Bibliography: 47 titles.
Keywords: orthogonally additive operator, regular operator, disjointness preserving operator, diffuse operator, integral Urysohn operator.
@article{SM_2024_215_1_a0,
     author = {N. M. Abasov and N. A. Dzhusoeva and M. A. Pliev},
     title = {Diffuse orthogonally additive operators},
     journal = {Sbornik. Mathematics},
     pages = {1--27},
     year = {2024},
     volume = {215},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_1_a0/}
}
TY  - JOUR
AU  - N. M. Abasov
AU  - N. A. Dzhusoeva
AU  - M. A. Pliev
TI  - Diffuse orthogonally additive operators
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1
EP  - 27
VL  - 215
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_1_a0/
LA  - en
ID  - SM_2024_215_1_a0
ER  - 
%0 Journal Article
%A N. M. Abasov
%A N. A. Dzhusoeva
%A M. A. Pliev
%T Diffuse orthogonally additive operators
%J Sbornik. Mathematics
%D 2024
%P 1-27
%V 215
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2024_215_1_a0/
%G en
%F SM_2024_215_1_a0
N. M. Abasov; N. A. Dzhusoeva; M. A. Pliev. Diffuse orthogonally additive operators. Sbornik. Mathematics, Tome 215 (2024) no. 1, pp. 1-27. http://geodesic.mathdoc.fr/item/SM_2024_215_1_a0/

[1] A. V. Bukhvalov, “Integral representation of linear operators”, Zap. Nauchn. Semin. Leningrad. Otdel. Mat. Inst. Steklov (LOMI), 47, Nauka, Leningrad branch, Leningrad, 1974, 5–14 ; English transl. in J. Soviet Math., 9 (1978), 129–137 | MR | Zbl | DOI

[2] B. Z. Vulikh, Introduction to the theory of partially ordered spaces, Wolters-Noordhoff Sci. Publ., Groningen, 1967, xv+387 pp. | MR | Zbl

[3] N. A. Dzhusoeva and S. Yu. Itarova, “On orthogonally additive operators in lattice-normed spaces”, Math. Notes, 113:1 (2023), 59–71 | DOI | MR | Zbl

[4] E. V. Kolesnikov, “The diffuse and atomic components of a positive operator”, Siberian Math. J., 39:2 (1998), 292–300 | DOI | MR | Zbl

[5] M. A. Krasnosel'skii, P. P. Zabreyko, E. I. Pustylnik and P. E. Sobolevski, Integral operators in spaces of summable functions, Monogr. Textbooks Mech. Solids Fluids Mech. Anal., Noordhoff International Publishing, Leiden, 1976, xv+520 pp. | MR | MR | Zbl | Zbl

[6] K. K. Kudaybergenov and B. O. Nurjanov, “Partial orders on $*$-regular rings”, Ufa Math. J., 15:1 (2023), 34–42 | DOI | MR

[7] V. L. Levin, Complex analysis in spaces of measurable functions and its applications to mathematics and economics, Nauka, Moscow, 1985, 352 pp. (Russian) | MR | Zbl

[8] M. A. Pliev and M. M. Popov, “On extension of abstract Urysohn operators”, Siberian Math. J., 57:3 (2016), 552–557 | DOI | MR | Zbl

[9] N. M. Abasov, “On a band generated by a disjointness preserving orthogonally additive operator”, Lobachevskii J. Math., 42:5 (2021), 851–856 | DOI | MR | Zbl

[10] N. M. Abasov, “On band preserving orthogonally additive operators”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 495–510 | DOI | MR | Zbl

[11] N. Abasov, “Completely additive and $C$-compact operators in lattice-normed spaces”, Ann. Funct. Anal., 11:4 (2020), 914–928 | DOI | MR | Zbl

[12] N. Abasov and M. Pliev, “Disjointness-preserving orthogonally additive operators in vector lattices”, Banach J. Math. Anal., 12:3 (2018), 730–750 | DOI | MR | Zbl

[13] N. Abasov and M. Pliev, “Dominated orthogonally additive operators in lattice-normed spaces”, Adv. Oper. Theory, 4:1 (2019), 251–264 | DOI | MR | Zbl

[14] Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, Grad. Stud. Math., 50, Amer. Math. Soc., Providence, RI, 2002, xiv+530 pp. | DOI | MR | Zbl

[15] C. D. Aliprantis and O. Burkinshaw, Positive operators, Springer, Dordrecht, 2006, xx+376 pp. | DOI | MR | Zbl

[16] J. Appell and P. P. Zabrejko, Nonlinear superposition operators, Cambridge Tracts in Math., 45, Cambridge Univ. Press, Cambridge, 1990, viii+311 pp. | DOI | MR | Zbl

[17] S. Aupov and K. Kudaybergenov, “Ring isomorphisms of Murray–von Neumann algebras”, J. Funct. Anal., 280:5 (2021), 108891, 28 pp. | DOI | MR | Zbl

[18] M. A. Ben Amor and M. Pliev, “Laterally continuous part of an abstract Uryson operator”, Int. J. Math. Anal. (Ruse), 7:58 (2013), 2853–2860 | DOI | MR

[19] A. Ber, V. Chilin and F. Sukochev, “Derivations in disjointly complete commutative regular algebras”, Quaestiones Math., 47 (2024), S23–S86 | DOI | MR | Zbl

[20] L. Drewnowski and W. Orlicz, “Continuity and representation of orthogonally-additive functionals”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 17 (1969), 647–653 | MR | Zbl

[21] H. Le Dret, Nonlinear elliptic partial differential equations. An introduction, Universitext, Springer, Cham, 2018, x+253 pp. | DOI | MR | Zbl

[22] N. Erkurşun Özcan and M. Pliev, “On orthogonally additive operators in $C$-complete vector lattices”, Banach J. Math. Anal., 16:1 (2022), 6, 25 pp. | DOI | MR | Zbl

[23] W. Feldman, “A Radon–Nikodym theorem for nonlinear functionals on Banach lattices”, Proc. Amer. Math. Soc. Ser. B, 9 (2022), 150–158 | DOI | MR | Zbl

[24] W. Feldman, “A factorization for orthogonally additive operators on Banach lattices”, J. Math. Anal. Appl., 472:1 (2019), 238–245 | DOI | MR | Zbl

[25] O. Fotiy, A. Gumenchuk, I. Krasikova and M. Popov, “On sums of narrow and compact operators”, Positivity, 24:1 (2020), 69–80 | DOI | MR | Zbl

[26] O. Fotiy, I. Krasikova, M. Pliev and M. Popov, “Order continuity of orthogonally additive operators”, Results Math., 77:1 (2022), 5, 19 pp. | DOI | MR | Zbl

[27] C. B. Huijsmans and B. de Pagter, “Disjointness preserving and diffuse operators”, Compositio Math., 79:3 (1991), 351–374 | MR | Zbl

[28] J. M. Mazón and S. Segura de León, “Order bounded orthogonally additive operators”, Rev. Roumaine Math. Pures Appl., 35:4 (1990), 329–353 | MR | Zbl

[29] M. Marcus and V. J. Mizel, “Representation theorems for nonlinear disjointly additive functionals and operators on Sobolev spaces”, Trans. Amer. Math. Soc., 228 (1977), 1–45 | DOI | MR | Zbl

[30] M. Marcus and V. J. Mizel, “Extension theorems of Hahn–Banach type for nonlinear disjointly additive functionals and operators in Lebesgue spaces”, J. Funct. Anal., 24:4 (1977), 303–335 | DOI | MR | Zbl

[31] V. Mykhaylyuk, M. Pliev and M. Popov, “The lateral order on Riesz spaces and orthogonally additive operators”, Positivity, 25:2 (2021), 291–327 | DOI | MR | Zbl

[32] V. Mykhaylyuk and M. Popov, “$\varepsilon$-shading operator on Riesz spaces and order continuity of orthogonally additive operators”, Results Math., 77:5 (2022), 209, 30 pp. | DOI | MR | Zbl

[33] B. de Pagter, “The components of a positive operator”, Nederl. Akad. Wetensch. Indag. Math., 45:5 (1983), 229–241 | DOI | MR | Zbl

[34] M. Pliev, “On $C$-compact orthogonally additive operators”, J. Math. Anal. Appl., 494:1 (2021), 124594, 15 pp. | DOI | MR | Zbl

[35] M. Pliev and K. Ramdane, “Order unbounded orthogonally additive operators in vector lattices”, Mediterr. J. Math., 15:2 (2018), 55, 20 pp. | DOI | MR | Zbl

[36] M. A. Pliev, F. Polat and M. R. Weber, “Narrow and $C$-compact orthogonally additive operators in lattice-normed spaces”, Results Math., 74:4 (2019), 157, 19 pp. | DOI | MR | Zbl

[37] M. Pliev and M. Popov, “Representation theorems for regular operators”, Math. Nachr., 2023, 1–18, Publ. online | DOI

[38] M. Pliev and M. Popov, “Narrow orthogonally additive operators”, Positivity, 18:4 (2014), 641–667 | DOI | MR | Zbl

[39] M. Pliev and F. Sukochev, “The Kalton and Rosenthal type decomposition of operators in Köthe–Bochner spaces”, J. Math. Anal. Appl., 500:2 (2021), 125142, 20 pp. | DOI | MR | Zbl

[40] M. Pliev and F. Sukochev, “Narrow operators on tensor products Köthe spaces”, J. Math. Anal. Appl., 522:1 (2023), 126950, 18 pp. | DOI | MR | Zbl

[41] M. A. Pliev and M. R. Weber, “Disjointness and order projections in the vector lattices of abstract Uryson operators”, Positivity, 20:3 (2016), 695–707 | DOI | MR | Zbl

[42] A. Ponosov and E. Stepanov, “Atomic operators, random dynamical systems and invariant measures”, St. Petersburg Math. J., 26:4 (2015), 607–642 | DOI | MR | Zbl

[43] M. Popov, “Banach lattices of orthogonally additive operators”, J. Math. Anal. Appl., 514:1 (2022), 126279, 26 pp. | DOI | MR | Zbl

[44] M. Popov and B. Randrianantoanina, Narrow operators on function spaces and vector lattices, De Gruyter Stud. Math., 45, Walter de Gruyter Co., Berlin, 2013, xiv+319 pp. | DOI | MR | Zbl

[45] S. Segura de León, “Bukhvalov type characterizations of Urysohn operators”, Studia Math., 99:3 (1991), 199–220 | DOI | MR | Zbl

[46] P. Tradacete and I. Villanueva, “Valuations on Banach lattices”, Int. Math. Res. Not. IMRN, 2020:1 (2020), 287–319 | DOI | MR | Zbl

[47] L. Weis, “On the representation of order continuous operators by random measures”, Trans. Amer. Math. Soc., 285:2 (1984), 535–563 | DOI | MR | Zbl