@article{SM_2024_215_1_a0,
author = {N. M. Abasov and N. A. Dzhusoeva and M. A. Pliev},
title = {Diffuse orthogonally additive operators},
journal = {Sbornik. Mathematics},
pages = {1--27},
year = {2024},
volume = {215},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_1_a0/}
}
N. M. Abasov; N. A. Dzhusoeva; M. A. Pliev. Diffuse orthogonally additive operators. Sbornik. Mathematics, Tome 215 (2024) no. 1, pp. 1-27. http://geodesic.mathdoc.fr/item/SM_2024_215_1_a0/
[1] A. V. Bukhvalov, “Integral representation of linear operators”, Zap. Nauchn. Semin. Leningrad. Otdel. Mat. Inst. Steklov (LOMI), 47, Nauka, Leningrad branch, Leningrad, 1974, 5–14 ; English transl. in J. Soviet Math., 9 (1978), 129–137 | MR | Zbl | DOI
[2] B. Z. Vulikh, Introduction to the theory of partially ordered spaces, Wolters-Noordhoff Sci. Publ., Groningen, 1967, xv+387 pp. | MR | Zbl
[3] N. A. Dzhusoeva and S. Yu. Itarova, “On orthogonally additive operators in lattice-normed spaces”, Math. Notes, 113:1 (2023), 59–71 | DOI | MR | Zbl
[4] E. V. Kolesnikov, “The diffuse and atomic components of a positive operator”, Siberian Math. J., 39:2 (1998), 292–300 | DOI | MR | Zbl
[5] M. A. Krasnosel'skii, P. P. Zabreyko, E. I. Pustylnik and P. E. Sobolevski, Integral operators in spaces of summable functions, Monogr. Textbooks Mech. Solids Fluids Mech. Anal., Noordhoff International Publishing, Leiden, 1976, xv+520 pp. | MR | MR | Zbl | Zbl
[6] K. K. Kudaybergenov and B. O. Nurjanov, “Partial orders on $*$-regular rings”, Ufa Math. J., 15:1 (2023), 34–42 | DOI | MR
[7] V. L. Levin, Complex analysis in spaces of measurable functions and its applications to mathematics and economics, Nauka, Moscow, 1985, 352 pp. (Russian) | MR | Zbl
[8] M. A. Pliev and M. M. Popov, “On extension of abstract Urysohn operators”, Siberian Math. J., 57:3 (2016), 552–557 | DOI | MR | Zbl
[9] N. M. Abasov, “On a band generated by a disjointness preserving orthogonally additive operator”, Lobachevskii J. Math., 42:5 (2021), 851–856 | DOI | MR | Zbl
[10] N. M. Abasov, “On band preserving orthogonally additive operators”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 495–510 | DOI | MR | Zbl
[11] N. Abasov, “Completely additive and $C$-compact operators in lattice-normed spaces”, Ann. Funct. Anal., 11:4 (2020), 914–928 | DOI | MR | Zbl
[12] N. Abasov and M. Pliev, “Disjointness-preserving orthogonally additive operators in vector lattices”, Banach J. Math. Anal., 12:3 (2018), 730–750 | DOI | MR | Zbl
[13] N. Abasov and M. Pliev, “Dominated orthogonally additive operators in lattice-normed spaces”, Adv. Oper. Theory, 4:1 (2019), 251–264 | DOI | MR | Zbl
[14] Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, Grad. Stud. Math., 50, Amer. Math. Soc., Providence, RI, 2002, xiv+530 pp. | DOI | MR | Zbl
[15] C. D. Aliprantis and O. Burkinshaw, Positive operators, Springer, Dordrecht, 2006, xx+376 pp. | DOI | MR | Zbl
[16] J. Appell and P. P. Zabrejko, Nonlinear superposition operators, Cambridge Tracts in Math., 45, Cambridge Univ. Press, Cambridge, 1990, viii+311 pp. | DOI | MR | Zbl
[17] S. Aupov and K. Kudaybergenov, “Ring isomorphisms of Murray–von Neumann algebras”, J. Funct. Anal., 280:5 (2021), 108891, 28 pp. | DOI | MR | Zbl
[18] M. A. Ben Amor and M. Pliev, “Laterally continuous part of an abstract Uryson operator”, Int. J. Math. Anal. (Ruse), 7:58 (2013), 2853–2860 | DOI | MR
[19] A. Ber, V. Chilin and F. Sukochev, “Derivations in disjointly complete commutative regular algebras”, Quaestiones Math., 47 (2024), S23–S86 | DOI | MR | Zbl
[20] L. Drewnowski and W. Orlicz, “Continuity and representation of orthogonally-additive functionals”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 17 (1969), 647–653 | MR | Zbl
[21] H. Le Dret, Nonlinear elliptic partial differential equations. An introduction, Universitext, Springer, Cham, 2018, x+253 pp. | DOI | MR | Zbl
[22] N. Erkurşun Özcan and M. Pliev, “On orthogonally additive operators in $C$-complete vector lattices”, Banach J. Math. Anal., 16:1 (2022), 6, 25 pp. | DOI | MR | Zbl
[23] W. Feldman, “A Radon–Nikodym theorem for nonlinear functionals on Banach lattices”, Proc. Amer. Math. Soc. Ser. B, 9 (2022), 150–158 | DOI | MR | Zbl
[24] W. Feldman, “A factorization for orthogonally additive operators on Banach lattices”, J. Math. Anal. Appl., 472:1 (2019), 238–245 | DOI | MR | Zbl
[25] O. Fotiy, A. Gumenchuk, I. Krasikova and M. Popov, “On sums of narrow and compact operators”, Positivity, 24:1 (2020), 69–80 | DOI | MR | Zbl
[26] O. Fotiy, I. Krasikova, M. Pliev and M. Popov, “Order continuity of orthogonally additive operators”, Results Math., 77:1 (2022), 5, 19 pp. | DOI | MR | Zbl
[27] C. B. Huijsmans and B. de Pagter, “Disjointness preserving and diffuse operators”, Compositio Math., 79:3 (1991), 351–374 | MR | Zbl
[28] J. M. Mazón and S. Segura de León, “Order bounded orthogonally additive operators”, Rev. Roumaine Math. Pures Appl., 35:4 (1990), 329–353 | MR | Zbl
[29] M. Marcus and V. J. Mizel, “Representation theorems for nonlinear disjointly additive functionals and operators on Sobolev spaces”, Trans. Amer. Math. Soc., 228 (1977), 1–45 | DOI | MR | Zbl
[30] M. Marcus and V. J. Mizel, “Extension theorems of Hahn–Banach type for nonlinear disjointly additive functionals and operators in Lebesgue spaces”, J. Funct. Anal., 24:4 (1977), 303–335 | DOI | MR | Zbl
[31] V. Mykhaylyuk, M. Pliev and M. Popov, “The lateral order on Riesz spaces and orthogonally additive operators”, Positivity, 25:2 (2021), 291–327 | DOI | MR | Zbl
[32] V. Mykhaylyuk and M. Popov, “$\varepsilon$-shading operator on Riesz spaces and order continuity of orthogonally additive operators”, Results Math., 77:5 (2022), 209, 30 pp. | DOI | MR | Zbl
[33] B. de Pagter, “The components of a positive operator”, Nederl. Akad. Wetensch. Indag. Math., 45:5 (1983), 229–241 | DOI | MR | Zbl
[34] M. Pliev, “On $C$-compact orthogonally additive operators”, J. Math. Anal. Appl., 494:1 (2021), 124594, 15 pp. | DOI | MR | Zbl
[35] M. Pliev and K. Ramdane, “Order unbounded orthogonally additive operators in vector lattices”, Mediterr. J. Math., 15:2 (2018), 55, 20 pp. | DOI | MR | Zbl
[36] M. A. Pliev, F. Polat and M. R. Weber, “Narrow and $C$-compact orthogonally additive operators in lattice-normed spaces”, Results Math., 74:4 (2019), 157, 19 pp. | DOI | MR | Zbl
[37] M. Pliev and M. Popov, “Representation theorems for regular operators”, Math. Nachr., 2023, 1–18, Publ. online | DOI
[38] M. Pliev and M. Popov, “Narrow orthogonally additive operators”, Positivity, 18:4 (2014), 641–667 | DOI | MR | Zbl
[39] M. Pliev and F. Sukochev, “The Kalton and Rosenthal type decomposition of operators in Köthe–Bochner spaces”, J. Math. Anal. Appl., 500:2 (2021), 125142, 20 pp. | DOI | MR | Zbl
[40] M. Pliev and F. Sukochev, “Narrow operators on tensor products Köthe spaces”, J. Math. Anal. Appl., 522:1 (2023), 126950, 18 pp. | DOI | MR | Zbl
[41] M. A. Pliev and M. R. Weber, “Disjointness and order projections in the vector lattices of abstract Uryson operators”, Positivity, 20:3 (2016), 695–707 | DOI | MR | Zbl
[42] A. Ponosov and E. Stepanov, “Atomic operators, random dynamical systems and invariant measures”, St. Petersburg Math. J., 26:4 (2015), 607–642 | DOI | MR | Zbl
[43] M. Popov, “Banach lattices of orthogonally additive operators”, J. Math. Anal. Appl., 514:1 (2022), 126279, 26 pp. | DOI | MR | Zbl
[44] M. Popov and B. Randrianantoanina, Narrow operators on function spaces and vector lattices, De Gruyter Stud. Math., 45, Walter de Gruyter Co., Berlin, 2013, xiv+319 pp. | DOI | MR | Zbl
[45] S. Segura de León, “Bukhvalov type characterizations of Urysohn operators”, Studia Math., 99:3 (1991), 199–220 | DOI | MR | Zbl
[46] P. Tradacete and I. Villanueva, “Valuations on Banach lattices”, Int. Math. Res. Not. IMRN, 2020:1 (2020), 287–319 | DOI | MR | Zbl
[47] L. Weis, “On the representation of order continuous operators by random measures”, Trans. Amer. Math. Soc., 285:2 (1984), 535–563 | DOI | MR | Zbl