Strong asymptotics of the best rational approximation to the exponential function on a~bounded interval
Sbornik. Mathematics, Tome 215 (2024) no. 12, pp. 1666-1719

Voir la notice de l'article provenant de la source Math-Net.Ru

We apply recent findings of complex approximation theory to best rational approximation of degree $n$ to the function $\exp(-(n+\nu)x)$ on a finite interval $[0,c]$. We show that the error norm behaves like the $n$th power of the main approximation rate times the $\nu$th power of a secondary approximation rate. The computation of the first rate is a consequence of works of Gonchar, Rakhmanov and Stahl done in the 1980s; the complete asymptotic description was achieved by Aptekarev in the first years of the 21st century. The solution is given in terms of elliptic integrals of the third kind. Bibliography: 92 titles.
Keywords: rational approximation, exponential function, complex potential.
@article{SM_2024_215_12_a3,
     author = {A. P. Magnus and J. Meinguet},
     title = {Strong asymptotics of the best rational approximation to the exponential function on a~bounded interval},
     journal = {Sbornik. Mathematics},
     pages = {1666--1719},
     publisher = {mathdoc},
     volume = {215},
     number = {12},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_12_a3/}
}
TY  - JOUR
AU  - A. P. Magnus
AU  - J. Meinguet
TI  - Strong asymptotics of the best rational approximation to the exponential function on a~bounded interval
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1666
EP  - 1719
VL  - 215
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_12_a3/
LA  - en
ID  - SM_2024_215_12_a3
ER  - 
%0 Journal Article
%A A. P. Magnus
%A J. Meinguet
%T Strong asymptotics of the best rational approximation to the exponential function on a~bounded interval
%J Sbornik. Mathematics
%D 2024
%P 1666-1719
%V 215
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_12_a3/
%G en
%F SM_2024_215_12_a3
A. P. Magnus; J. Meinguet. Strong asymptotics of the best rational approximation to the exponential function on a~bounded interval. Sbornik. Mathematics, Tome 215 (2024) no. 12, pp. 1666-1719. http://geodesic.mathdoc.fr/item/SM_2024_215_12_a3/