@article{SM_2024_215_12_a3,
author = {A. P. Magnus and J. Meinguet},
title = {Strong asymptotics of the best rational approximation to the exponential function on a~bounded interval},
journal = {Sbornik. Mathematics},
pages = {1666--1719},
year = {2024},
volume = {215},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_12_a3/}
}
TY - JOUR AU - A. P. Magnus AU - J. Meinguet TI - Strong asymptotics of the best rational approximation to the exponential function on a bounded interval JO - Sbornik. Mathematics PY - 2024 SP - 1666 EP - 1719 VL - 215 IS - 12 UR - http://geodesic.mathdoc.fr/item/SM_2024_215_12_a3/ LA - en ID - SM_2024_215_12_a3 ER -
A. P. Magnus; J. Meinguet. Strong asymptotics of the best rational approximation to the exponential function on a bounded interval. Sbornik. Mathematics, Tome 215 (2024) no. 12, pp. 1666-1719. http://geodesic.mathdoc.fr/item/SM_2024_215_12_a3/
[1] Handbook of mathematical functions with formulae, graphs and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, eds. M. Abramowitz and I. A. Stegun, Superintendent of Documents, U.S. Government Printing Office, Washington, DC, 1964, xiv+1046 pp. | MR | Zbl
[2] V. M. Adamjan (Adamyan), D. Z. Arov and M. G. Kreĭn, “Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur–Takagi problem”, Math. USSR-Sb., 15:1 (1971), 31–73 | DOI | MR | Zbl
[3] N. Achyeser (Akhiezer), Zap. Kharkov. Mat. Obshch., 13 (1936), 3–14 | Zbl
[4] N. I. Achieser (Akhiezer), Theory of approximation, Dover Publ., New York, 1992, x+307 pp. | MR | Zbl
[5] N. I. Akhiezer, Elements of the theory of elliptic functions, Transl. Math. Monogr., 79, Amer. Math. Soc., Providence, RI, 1990, viii+237 pp. | DOI | MR | Zbl
[6] A. I. Aptekarev, “Sharp constants for rational approximations of analytic functions”, Sb. Math., 193:1 (2002), 1–72 | DOI | MR | Zbl
[7] Th. Bagby, “The modulus of a plane condenser”, J. Math. Mech., 17 (1967), 315–329 | DOI | MR | Zbl
[8] Th. Bagby, “On interpolation by rational functions”, Duke Math. J., 36 (1969), 95–104 | DOI | MR | Zbl
[9] G. A. Baker, Jr., Essentials of Padé approximants, Academic Press, New York–London, 1975, xi+306 pp. | MR | Zbl
[10] L. Baratchart, H. Stahl and M. Yattselev, “Weighted extremal domains and best rational approximation”, Adv. Math., 229:1 (2012), 357–407 | DOI | MR | Zbl
[11] C. M. Bender and S. A. Orszag, Advanced mathematical methods for scientists and engineers, Internat. Ser. Pure Appl. Math., McGraw-Hill Book Co., New York, 1978, xiv+593 pp. | MR | Zbl
[12] A. Bogatyrev, Extremal polynomials and Riemann surfaces, Springer Monogr. Math., Springer, Heidelberg, 2012, xxvi+150 pp. | DOI | MR | Zbl
[13] C. de Boor, A practical guide to splines, Appl. Math. Sci., 27, Rev. ed., Springer-Verlag, New York, 2001, xviii+346 pp. | MR | Zbl
[14] C. de Boor, “B(asic)-spline basics”, Fundamental developments of computer-aided geometric modeling, Academic Press, London, 1993, 27–49; MRC 2952, 1986 https://www.cs.unc.edu/~dm/UNC/COMP258/Papers/bsplbasic.pdf
[15] J. M. Borwein and P. B. Borwein, Pi and the AGM. A study in analytic number theory and computational complexity, Canad. Math. Soc. Ser. Monogr. Adv. Texts, Wiley-Intersci. Publ., John Wiley Sons, Inc., New York, 1987, xvi+414 pp. | MR | Zbl
[16] D. Braess, “On the conjecture of Meinardus on rational approximation of $e^x$”, J. Approx. Theory, 36:4 (1982), 317–320 ; II, 40:4 (1984), 375–379 | DOI | MR | Zbl | DOI | MR | Zbl
[17] R. Bulirsch, “Numerical calculation of elliptic integrals and elliptic functions”, Numer. Math., 7 (1965), 78–90 ; II, 353–354 ; III, 13 (1969), 305–315 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[18] H. Burkhardt and W. F. Meyer, “Potentialtheorie (Theorie der Laplace–Poissonschen Differentialgleichung)”, Encyclopädie der mathematischen Wissenschaften, v. 2 A (Analysis), § 7.b, B. G. Teubner, Leipzig, 1899–1916, 464–503
[19] V. I. Buslaev and S. P. Suetin, “On the existence of compacta of minimal capacity in the theory of rational approximation of multi-valued analytic functions”, J. Approx. Theory, 206 (2016), 48–67 | DOI | MR | Zbl
[20] P. F. Byrd and M. D. Friedman, Handbook of elliptic integrals for engineers and scientists, Grundlehren Math. Wiss., 67, 2nd rev. ed., Springer-Verlag, New York–Heidelberg, 1971, xvi+358 pp. | DOI | MR | Zbl
[21] A. J. Carpenter, A. Ruttan and R. S. Varga, “Extended numerical computations on the “1/9” conjecture in rational approximation theory”, Rational approximation and interpolation (Tampa, FL 1983), Lecture Notes in Math., 1105, Springer-Verlag, Berlin, 1984, 383–411 | DOI | MR | Zbl
[22] W. J. Cody, G. Meinardus and R. S. Varga, “Chebyshev rational approximations to $e^{-x}$ on $[0,+\infty)$ and applications to heat-conduction problems”, J. Approx. Theory, 2 (1969), 50–65 | DOI | MR | Zbl
[23] P. D. Dragnev, B. Fuglede, D. P. Hardin, E. B. Saff and N. Zorii, “Minimum Riesz energy problems for a condenser with touching plates”, Potential Anal., 44:3 (2016), 543–577 | DOI | MR | Zbl
[24] K. A. Driver and N. M. Temme, “Zero and pole distribution of diagonal Padé approximants to the exponential function”, Quaest. Math., 22:1 (1999), 7–17 | DOI | MR | Zbl
[25] V. Druskin, S. Güttel and L. Knizhnerman, “Near-optimal perfectly matched layers for indefinite Helmholtz problems”, SIAM Rev., 58:1 (2016), 90–116 | DOI | MR | Zbl
[26] A. Erdélyi, Asymptotic expansions, Dover Publications, Inc., New York, 1956, vi+108 pp. | MR | Zbl
[27] L. Fox and I. B. Parker, Chebyshev polynomials in numerical analysis, Oxford Univ. Press, London–New York–Toronto, 1968, ix+205 pp. | MR | Zbl
[28] D. Gaier, Vorlesungen über Approximation im Komplexen, Birkhäuser Verlag, Basel–Boston, Mass., 1980, 174 pp. ; English. transl., D. Gaier, Lectures on complex approximation, Birkhäuser Boston Inc., Boston, MA, 1987, xvi+196 pp. | DOI | MR | Zbl | DOI | MR | Zbl
[29] T. Ganelius, “Degree of rational approximation”, Lectures on approximation and value distribution, Sém. Math. Sup., 79, Presses Univ. Montréal, Montreal, QC, 1982, 9–78 | MR | Zbl
[30] A. A. Gončar, “Zolotarev problems connected with rational functions”, Math. USSR-Sb., 7:4 (1969), 623–635 | DOI | MR | Zbl
[31] A. A. Gončar, “The rate of rational approximation and the property of single-valuedness of an analytic function in the neighborhood of an isolated singular point”, Math. USSR-Sb., 23:2 (1974), 254–270 | DOI | MR | Zbl
[32] A. A. Gončar, “On the speed of rational approximation of some analytic functions”, Math. USSR-Sb., 34:2 (1978), 131–145 | DOI | MR | Zbl
[33] A. A. Gonchar, “5.6. Rational approximation of analytic functions”, Studies in linear operators and function theory. 99 Unsolved problems in linear and complex analysis. Ch. 6. Approximation, J. Soviet Math., 26:5 (1984), 2218–2220 | DOI
[34] A. A. Gonchar, “Rational approximation of analytic functions”, Problem 12.17 (Ch. 12. Approximations and capacities), Linear and complex analysis problem. Problem book 3. Part II, Lecture Notes in Math., 1574, Springer-Verlag, Berlin–Heidelberg, 1994, 73–176 | DOI | MR | Zbl
[35] A. A. Gončar and G. López Lagomasino, “On Markov's theorem for multipoint Padé approximants”, Math. USSR-Sb., 34:4 (1978), 449–459 | DOI | MR | Zbl
[36] A. A. Gonchar and E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Math. USSR-Sb., 62:2 (1989), 305–348 | DOI | MR | Zbl
[37] A. A. Gončar and E. A. Rakhmanov, “On the rate of rational approximation of analytic functions”, Approximation and optimization (Havana 1987), Lecture Notes in Math., 1354, Springer-Verlag, Berlin, 1988, 25–42 | DOI | MR | Zbl
[38] L. Haine, “Geodesic flow on $\operatorname{SO}(4)$ and Abelian surfaces”, Math. Ann., 263:4 (1983), 435–472 | DOI | MR | Zbl
[39] P. Henrici, Applied and computational complex analysis, v. 3, Pure Appl. Math. (N. Y.), Discrete Fourier analysis–Cauchy integrals–construction of conformal maps–univalent functions, Wiley-Intersci. Publ., John Wiley Sons, Inc., New York, 1986, xvi+637 pp. | MR | Zbl
[40] E. Hille, Analytic function theory, v. I, Ginn and Co., Boston, MA, 1959, xi+308 pp. ; 2nd ed., Chelsea Publ. Co., New York, 1982, xi+308 pp. | MR | Zbl | Zbl
[41] Z. G. Ignatov and V. K. Kaishev, B-splines and linear combinations of uniform order statistics, MRC tech. summary rep. # 2817, Math. Res. Center Univ. Wisconsin–Madison, 1985, 23 pp.
[42] E. Jahnke, F. Emde and F. Lösch, Tafeln höherer Funktionen (Tables of higher functions), ed. 6. Aufl., B. G. Teubner Verlagsgesellschaft, Stuttgart; McGraw-Hill Book Co., Inc., New York–Toronto–London, 1960, xii+318 pp. | MR | Zbl
[43] M. Joye and J.-J. Quisquater, “Hessian elliptic curves and side-channel attacks”, Cryptographic hardware and embedded systems – CHES 2001 (Paris 2001), Lecture Notes in Comput. Sci., 2162, Springer-Verlag, Berlin, 2001, 402–410 | DOI | MR | Zbl
[44] M. Kac and P. van Moerbeke, “A complete solution of the periodic Toda problem”, Proc. Nat. Acad. Sci. U.S.A., 72:8 (1975), 2879–2880 | DOI | MR | Zbl
[45] O. D. Kellogg, Foundations of potential theory, Grundlehren Math. Wiss., 31, J. Springer, Berlin, 1929, ix+334 pp. | MR | Zbl
[46] L. V. King, On the direct numerical calculation of elliptic functions and integrals, Cambridge Univ. Press, Cambridge, 1924, viii+42 pp. | Zbl
[47] M. A. Komarov, “A note on rational approximations to $e^x$, constructed by Németh and Newman”, J. Approx. Theory, 240 (2019), 126–128 | DOI | MR | Zbl
[48] G. Lemaître, “Calcul des intégrales elliptiques”, Acad. Roy. Belgique. Bull. Cl. Sci. (5), 33 (1947), 200–211 | MR
[49] G. López Lagomasino, “Survey of multipoint Padé approximation to Markov type meromorphic functions and asymptotic properties of the orthogonal polynomials generated by them”, Polynômes orthogonaux et applications (Bar-le-Duc 1984), Lecture Notes in Math., 1171, Springer-Verlag, Berlin, 1985, 309–316 | DOI | MR | Zbl
[50] G. L. Lopes, “On the asymptotics of the ratio of orthogonal polynomials and convergence of multipoint Padé approximants”, Math. USSR-Sb., 56:1 (1987), 207–219 | DOI | MR | Zbl
[51] G. López and E. A. Rakhmanov, “Rational approximations, orthogonal polynomials and equilibrium distributions”, Orthogonal polynomials and their applications (Segovia 1986), Lecture Notes in Math., 1329, Springer-Verlag, Berlin, 1988, 125–157 | DOI | MR | Zbl
[52] A. P. Magnus, “On the use of Carathéodory–Fejér method for investigating ‘1/9’ and similar constants”, Nonlinear numerical methods and rational approximation (Wilrijk 1987), Math. Appl., 43, D. Reidel Publ. Co., Dordrecht, 1988, 105–132 | DOI | MR | Zbl
[53] A. P. Magnus, “Asymptotics and super asymptotics for best rational approximation error norms to the exponential function (the ‘1/9’ problem) by the Carathéodory–Fejér's method”, Nonlinear methods and rational approximation, II (Wilrijk 1993), Math. Appl., 296, Kluwer Acad. Publ., Dordrecht, 1994, 173–185 | DOI | MR | Zbl
[54] A. P. Magnus and J. Meinguet, “The elliptic functions and integrals of the “1/9” problem”, Numer. Algorithms, 24:1–2 (2000), 117–139 | DOI | MR | Zbl
[55] F. Marcellán and A. Martínez-Finkelshtein, “Guillermo López Lagomasino: mathematical life”, Recent trends in orthogonal polynomials and approximation theory, Contemp. Math., 507, Amer. Math. Soc., Providence, RI, 2010, 1–24 | DOI | MR | Zbl
[56] A. Martínez-Finkelshtein, “Trajectories of quadratic differentials and approximations of exponents on the semiaxis”, Complex methods in approximation theory (Almería 1995), Monogr. Cienc. Tecnol., 2, Univ. Almería, Serv. Publ., Almería , 1997, 69–84 | MR | Zbl
[57] A. Martínez-Finkelshtein, “Equilibrium problems of potential theory in the complex plane”, Orthogonal polynomials and special functions, Lecture Notes in Math., 1883, Springer-Verlag, Berlin, 2006, 79–117 | DOI | MR | Zbl
[58] A. Martínez-Finkelshtein and E. A. Rakhmanov, “Do orthogonal polynomials dream of symmetric curves?”, Found. Comput. Math., 16:6 (2016), 1697–1736 | DOI | MR | Zbl
[59] G. Meinardus, Approximation of functions: theory and numerical methods, Exp. transl. of the German ed., Springer Tracts Nat. Philos., 13, Springer-Verlag New York, Inc., New York, 1967, viii+198 pp. | DOI | MR | Zbl
[60] J. Meinguet, “A simplified presentation of the Adamjan–Arov–Krein approximation theory”, Computational aspects of complex analysis (Braunlage 1982), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 102, D. Reidel Publ. Co., Dordrecht, 1983, 217–248 | DOI | MR | Zbl
[61] J. Meinguet, “Once again: the Adamjan–Arov–Krein approximation theory”, Nonlinear numerical methods and rational approximation (Wilrijk 1987), Math. Appl., 43, D. Reidel Publ. Co., Dordrecht, 1988, 77–91 | DOI | MR | Zbl
[62] J. Meinguet, “An electrostatics approach to the determination of extremal measures”, Math. Phys. Anal. Geom., 3:4 (2000), 323–337 | DOI | MR | Zbl
[63] J. Meinguet and V. Belevitch, “On the realizability of ladder filters”, IRE Trans. Circuit Theory, 5:4 (1958), 253–255 | DOI
[64] L. M. Milne-Thomson, The calculus of finite differences, Macmillan Co., Ltd., London, 1933, xxiii+558 pp. | MR | Zbl
[65] Z. Nehari, Conformal mapping, McGraw-Hill Book Co., Inc., New York–Toronto–London, 1952, viii+396 pp. | MR | Zbl
[66] J. Nuttall, “Location of poles of Padé approximants to entire functions”, Rational approximation and interpolation (Tampa, FL 1983), Lecture Notes in Math., 1105, Springer-Verlag, Berlin, 1984, 354–363 | DOI | MR | Zbl
[67] NIST handbook of mathematical functions, eds. F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge Univ. Press, Cambridge, 2010, xvi+951 pp. | MR | Zbl
[68] S. Paszkowski, Zastosowania numeryczne wielomianów i szeregów Czebyszewa [Numerical applications of Čebyšev polynomials and series], Państwowe Wydawnictwo Naukowe, Warsaw, 1975, 481 pp. | MR | Zbl
[69] O. Perron, Die Lehre von den Kettenbrüchen, B. G. Teubner, Leipzig–Berlin, 1913, xiii+520 pp. | Zbl
[70] E. A. Rakhmanov, “Orthogonal polynomials and $S$-curves”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239 | DOI | MR | Zbl
[71] E. A. Rakhmanov, “The Gonchar–Stahl $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions”, Sb. Math., 207:9 (2016), 1236–1266 | DOI | MR | Zbl
[72] E. A. Rakhmanov, “Zero distribution for Angelesco Hermite–Padé polynomials”, Russian Math. Surveys, 73:3 (2018), 457–518 | DOI | MR | Zbl
[73] E. B. Saff, “Logarithmic potential theory with applications to approximation theory”, Surv. Approx. Theory, 5 (2010), 165–200 | MR | Zbl
[74] E. B. Saff and V. Totik, Logarithmic potentials with external fields, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997, xvi+505 pp. | DOI | MR | Zbl
[75] M. A. Snyder, Chebyshev methods in numerical approximation, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1966, x+114 pp. | MR | Zbl
[76] H. Stahl, “Orthogonal polynomials with complex-valued weight function. I”, Constr. Approx., 2:3 (1986), 225–240 | DOI | MR | Zbl
[77] H. Stahl, “Orthogonal polynomials with complex-valued weight function. II”, Constr. Approx., 2:3 (1986), 241–251 | DOI | MR | Zbl
[78] H. Stahl, “A note on three conjectures by Gonchar on rational approximation”, J. Approx. Theory, 50:1 (1987), 3–7 | DOI | MR | Zbl
[79] H. Stahl, “Convergence of rational interpolants”, Bull. Belg. Math. Soc. Simon Stevin, 1996, Suppl., 11–32 | MR | Zbl
[80] H. Stahl, Calculating rational best approximants on $(-\infty,0]$, 3ièmes journées approximation 15–16 mai 2008, Lille, unpubl. manuscript
[81] H. Stahl and Th. Schmelzer, “An extension of the '1/9'-problem”, J. Comput. Appl. Math., 233:3 (2009), 821–834 | DOI | MR | Zbl
[82] H. Stahl, L. Baratchart and M. Yattselev, AAK approximants to functions with branch points, Workshop ‘Approximation days 2012’ (Leuven 2012) https://wis.kuleuven.be/events/ad12/talks/stahl0.pdf
[83] J.-P. Thiran and C. Detaille, “Chebyshev polynomials on circular arcs in the complex plane”, Progress in approximation theory, Academic Press, Inc., Boston, MA, 1991, 771–786 | MR | Zbl
[84] J. Todd, “Applications of transformation theory: a legacy from Zolotarev (1847–1878)”, Approximation theory and spline functions (St. John's, NL 1983), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 136, D. Reidel Publishing Co., Dordrecht, 1984, 207–245 ; “A legacy from E. I. Zolotarev (1847–1878)”, Math. Intelligencer, 10:2 (1988), 50–53 | DOI | MR | Zbl | DOI | MR | Zbl
[85] L. N. Trefethen and M. H. Gutknecht, “The Carathéodory–Fejér method for real rational approximation”, SIAM J. Numer. Anal., 20:2 (1983), 420–436 | DOI | MR | Zbl
[86] L. N. Trefethen, “MATLAB programs for CF approximation”, Approximation theory V, Academic Press, Inc., Boston, MA, 1986, 599–602 | MR | Zbl
[87] L. N. Trefethen and M. Javed, Central limit theorem, 2012 https://www.chebfun.org/examples/stats/CentralLimitTheorem.html
[88] M. Unser, A. Aldroubi and M. Eden, “On the asymptotic convergence of $B$-spline wavelets to Gabor functions”, IEEE Trans. Inform. Theory, 38:2 (1992), 864–872 | DOI | MR | Zbl
[89] R. S. Varga, Scientific computation on mathematical problems and conjectures, CBMS-NSF Regional Conf. Ser. in Appl. Math., 60, SIAM, Philadelphia, PA, 1990, vi+122 pp. | DOI | MR | Zbl
[90] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloq. Publ., XX, Amer. Math. Soc., New York, 1935, ix+383 pp. | DOI | MR | Zbl
[91] J. L. Walsh, The location of critical points of analytic and harmonic functions, Amer. Math. Soc. Colloq. Publ., 34, Amer. Math. Soc., New York, 1950, viii+384 pp. | MR | Zbl
[92] R. Wong and J.-M. Zhang, “Asymptotic expansions of the generalized Bessel polynomials”, J. Comput. Appl. Math., 85:1 (1997), 87–112 | DOI | MR | Zbl