Zeros of discriminants constructed from Hermite--Pad\'e polynomials of an algebraic function and their relation to branch points
Sbornik. Mathematics, Tome 215 (2024) no. 12, pp. 1633-1665

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f_\infty$ be the germ at $\infty$ of some algebraic function $f$ of degree $m+1$. Let $Q_{n,j}$, $j=0,\dots,m$, be the Hermite–Padé polynomials of the first type of order $n\in\mathbb N$ constructed from the tuple of germs $[1, f_ \infty, f_\infty^2,\dots,f_\infty^m]$. We study the asymptotic properties of discriminants constructed from the Hermite–Padé polynomials in question, that is, the discriminants $D_n(z)$ of the polynomials $Q_{n,m}(z)w^m+Q_{n,m-1}(z)w^{m-1}+\dots+Q_{n,0}(z)$. We find their weak asymptotics, as well as the asymptotic behaviour of their ratio with the polynomial $Q_{n,m}^{2m-2}$. In addition, we refine the weak asymptotic formulae for $D_n$ at branch points of the original algebraic function $f$ and apply the results obtained to the problem of finding branch points of $f$ numerically on the basis of the prescribed germ $f_\infty$, which is used in applied problems. Bibliography: 49 titles.
Keywords: Hermite–Padé polynomials, branch points, algebraic functions, weak asymptotics.
Mots-clés : discriminants
@article{SM_2024_215_12_a2,
     author = {A. V. Komlov and R. V. Palvelev},
     title = {Zeros of discriminants constructed from {Hermite--Pad\'e} polynomials of an algebraic function and their relation to branch points},
     journal = {Sbornik. Mathematics},
     pages = {1633--1665},
     publisher = {mathdoc},
     volume = {215},
     number = {12},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_12_a2/}
}
TY  - JOUR
AU  - A. V. Komlov
AU  - R. V. Palvelev
TI  - Zeros of discriminants constructed from Hermite--Pad\'e polynomials of an algebraic function and their relation to branch points
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1633
EP  - 1665
VL  - 215
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_12_a2/
LA  - en
ID  - SM_2024_215_12_a2
ER  - 
%0 Journal Article
%A A. V. Komlov
%A R. V. Palvelev
%T Zeros of discriminants constructed from Hermite--Pad\'e polynomials of an algebraic function and their relation to branch points
%J Sbornik. Mathematics
%D 2024
%P 1633-1665
%V 215
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_12_a2/
%G en
%F SM_2024_215_12_a2
A. V. Komlov; R. V. Palvelev. Zeros of discriminants constructed from Hermite--Pad\'e polynomials of an algebraic function and their relation to branch points. Sbornik. Mathematics, Tome 215 (2024) no. 12, pp. 1633-1665. http://geodesic.mathdoc.fr/item/SM_2024_215_12_a2/