Rate of convergence in the central limit theorem for the determinantal point process with Bessel kernel
Sbornik. Mathematics, Tome 215 (2024) no. 12, pp. 1607-1632 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a family of linear operators diagonalized by the Hankel transform. We express explicitly the Fredholm determinants of these operators, as restricted to $L_2[0, R]$, so that the rate of their convergence as $R\to\infty$ can be found. We use the link between these determinants and the distribution of additive functionals in a determinantal point process with Bessel kernel and estimate the distance in the Kolmogorov–Smirnov metric between the distribution of these functionals and the Gaussian distribution. Bibliography: 27 titles.
Keywords: Wiener–Hopf operators, Fredholm determinants, additive functionals.
Mots-clés : Bessel kernel
@article{SM_2024_215_12_a1,
     author = {S. M. Gorbunov},
     title = {Rate of convergence in the central limit theorem for the determinantal point process with {Bessel} kernel},
     journal = {Sbornik. Mathematics},
     pages = {1607--1632},
     year = {2024},
     volume = {215},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_12_a1/}
}
TY  - JOUR
AU  - S. M. Gorbunov
TI  - Rate of convergence in the central limit theorem for the determinantal point process with Bessel kernel
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1607
EP  - 1632
VL  - 215
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_12_a1/
LA  - en
ID  - SM_2024_215_12_a1
ER  - 
%0 Journal Article
%A S. M. Gorbunov
%T Rate of convergence in the central limit theorem for the determinantal point process with Bessel kernel
%J Sbornik. Mathematics
%D 2024
%P 1607-1632
%V 215
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2024_215_12_a1/
%G en
%F SM_2024_215_12_a1
S. M. Gorbunov. Rate of convergence in the central limit theorem for the determinantal point process with Bessel kernel. Sbornik. Mathematics, Tome 215 (2024) no. 12, pp. 1607-1632. http://geodesic.mathdoc.fr/item/SM_2024_215_12_a1/

[1] Zhigang Bao and Yukun He, Quantitative CLT for linear eigenvalue statistics of Wigner matrices, arXiv: 2103.05402

[2] E. L. Basor and Yang Chen, “A note on Wiener–Hopf determinants and the Borodin–Okounkov identity”, Integral Equations Operator Theory, 45:3 (2003), 301–308 | DOI | MR | Zbl

[3] E. L. Basor and T. Ehrhardt, “Asymptotics of determinants of Bessel operators”, Comm. Math. Phys., 234:3 (2003), 491–516 | DOI | MR | Zbl

[4] E. L. Basor and T. Ehrhardt, Determinant computations for some classes of Toeplitz–Hankel matrices, arXiv: 0804.3073

[5] E. L. Basor, T. Ehrhardt and H. Widom, On the determinant of a certain Wiener–Hopf + Hankel operator, arXiv: math/0304002

[6] E. L. Basor and H. Widom, “On a Toeplitz determinant identity of Borodin and Okounkov”, Integral Equations Operator Theory, 37:4 (2000), 397–401 | DOI | MR | Zbl

[7] S. Berezin and A. I. Bufetov, “On the rate of convergence in the central limit theorem for linear statistics of Gaussian, Laguerre, and Jacobi ensembles”, Pure Appl. Funct. Anal., 6:1 (2021), 57–99 | MR | Zbl

[8] D. Betea, Correlations for symplectic and orthogonal Schur measures, arXiv: 1804.08495

[9] A. Böttcher, “On the determinant formulas by Borodin, Okounkov, Baik, Deift, and Rains”, Toeplitz matrices and singular integral equations, Oper. Theory Adv. Appl., 135, Birkhäuser Verlag, Basel, 2002, 91–99 | DOI | MR | Zbl

[10] A. Böttcher and B. Silbermann, Analysis of Toeplitz operators, Springer Monogr. Math., 2nd ed., Springer-Verlag, Berlin, 2006, xiv+665 pp. | DOI | MR | Zbl

[11] A. Borodin and A. Okounkov, “A Fredholm determinant formula for Toeplitz determinants”, Integral Equations Operator Theory, 37:4 (2000), 386–396 | DOI | MR | Zbl

[12] A. Bufetov, “The expectation of a multiplicative functional under the sine-process”, Funct. Anal. Appl., 58:2 (2024), 120–128 | DOI | Zbl

[13] A. I. Bufetov, The sine-process has excess one, arXiv: 1912.13454

[14] P. Deift and X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. of Math. (2), 137:2 (1993), 295–368 | DOI | MR | Zbl

[15] T. Ehrhardt, “A generalization of Pincus' formula and Toeplitz operator determinants”, Arch. Math. (Basel), 80:3 (2003), 302–309 | DOI | MR | Zbl

[16] W. Feller, An introduction to probability theory and its applications, v. 2, John Wiley Sons, Inc., New York–London–Sydney, 1966, xviii+636 pp. | MR | Zbl

[17] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 5th ed., Academic Press, Inc., Boston, MA, 1994, xlviii+1204 pp. | MR | Zbl

[18] K. Johansson, “On random matrices from the compact classical groups”, Ann. of Math. (2), 145:3 (1997), 519–545 | DOI | MR | Zbl

[19] J. P. Keating, F. Mezzadri and B. Singphu, “Rate of convergence of linear functions on the unitary group”, J. Phys. A, 44:3 (2011), 035204, 27 pp. | DOI | MR | Zbl

[20] G. Lambert, M. Ledoux and C. Webb, “Quantitative normal approximation of linear statistics of $\beta$-ensembles”, Ann. Probab., 47:5 (2019), 2619–2685 | DOI | MR | Zbl

[21] O. Macchi, “The coincidence approach to stochastic point processes”, Adv. in Appl. Probab., 7 (1975), 83–122 | DOI | MR | Zbl

[22] B. Simon, Operator theory, Compr. Course Anal., 4, Amer. Math. Soc., Providence, RI, 2015, xviii+749 pp. | DOI | MR | Zbl

[23] B. Simon, Orthogonal polynomials on the unit circle, Part 1. Classical theory, Amer. Math. Soc. Colloq. Publ., 54, Part 1, Amer. Math. Soc., Providence, RI, 2005, xxvi+466 pp. | MR | Zbl

[24] B. Simon, Trace ideals and their applications, Math. Surveys Monogr., 120, 2nd ed., Amer. Math. Soc., Providence, RI, 2005, viii+150 pp. | DOI | MR | Zbl

[25] A. Soshnikov, “Determinantal random point fields”, Russian Math. Surveys, 55:5 (2000), 923–975 | DOI | MR | Zbl

[26] C. A. Tracy and H. Widom, “Level spacing distributions and the Bessel kernel”, Comm. Math. Phys., 161:2 (1994), 289–309 | DOI | MR | Zbl

[27] H. Widom, “A trace formula for Wiener–Hopf operators”, J. Operator Theory, 8:2 (1982), 279–298 | MR | Zbl