Rate of convergence in the central limit theorem for the determinantal point process with Bessel kernel
Sbornik. Mathematics, Tome 215 (2024) no. 12, pp. 1607-1632

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a family of linear operators diagonalized by the Hankel transform. We express explicitly the Fredholm determinants of these operators, as restricted to $L_2[0, R]$, so that the rate of their convergence as $R\to\infty$ can be found. We use the link between these determinants and the distribution of additive functionals in a determinantal point process with Bessel kernel and estimate the distance in the Kolmogorov–Smirnov metric between the distribution of these functionals and the Gaussian distribution. Bibliography: 27 titles.
Keywords: Wiener–Hopf operators, Fredholm determinants, additive functionals.
Mots-clés : Bessel kernel
@article{SM_2024_215_12_a1,
     author = {S. M. Gorbunov},
     title = {Rate of convergence in the central limit theorem for the determinantal point process with {Bessel} kernel},
     journal = {Sbornik. Mathematics},
     pages = {1607--1632},
     publisher = {mathdoc},
     volume = {215},
     number = {12},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_12_a1/}
}
TY  - JOUR
AU  - S. M. Gorbunov
TI  - Rate of convergence in the central limit theorem for the determinantal point process with Bessel kernel
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1607
EP  - 1632
VL  - 215
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_12_a1/
LA  - en
ID  - SM_2024_215_12_a1
ER  - 
%0 Journal Article
%A S. M. Gorbunov
%T Rate of convergence in the central limit theorem for the determinantal point process with Bessel kernel
%J Sbornik. Mathematics
%D 2024
%P 1607-1632
%V 215
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_12_a1/
%G en
%F SM_2024_215_12_a1
S. M. Gorbunov. Rate of convergence in the central limit theorem for the determinantal point process with Bessel kernel. Sbornik. Mathematics, Tome 215 (2024) no. 12, pp. 1607-1632. http://geodesic.mathdoc.fr/item/SM_2024_215_12_a1/