@article{SM_2024_215_11_a4,
author = {M. E. Shirokov},
title = {Lower semicontinuity of relative entropy disturbance and its consequences},
journal = {Sbornik. Mathematics},
pages = {1549--1581},
year = {2024},
volume = {215},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_11_a4/}
}
M. E. Shirokov. Lower semicontinuity of relative entropy disturbance and its consequences. Sbornik. Mathematics, Tome 215 (2024) no. 11, pp. 1549-1581. http://geodesic.mathdoc.fr/item/SM_2024_215_11_a4/
[1] H. Umegaki, “Conditional expectation in an operator algebra. IV. Entropy and information”, Kōdai Math. Sem. Rep., 14:2 (1962), 59–85 | DOI | MR | Zbl
[2] B. Schumacher and M. D. Westmoreland, Relative entropy in quantum information theory, arXiv: quant-ph/0004045
[3] V. Vedral, “The role of relative entropy in quantum information theory”, Rev. Modern Phys., 74:1 (2002), 197–234 | DOI | MR | Zbl
[4] M. Ohya and D. Petz, Quantum entropy and its use, Theoret. Math. Phys., Corr. 2nd pr., Springer-Verlag, Berlin, 2004, 357 pp. | MR | Zbl
[5] A. Wehrl, “General properties of entropy”, Rev. Modern Phys., 50:2 (1978), 221–260 | DOI | MR
[6] A. S. Holevo, Statistical structure of quantum theory, Lect. Notes Phys. Monogr., 67, Springer-Verlag, Berlin, 2001, x+159 pp. | DOI | MR | Zbl
[7] G. Lindblad, “Completely positive maps and entropy inequalities”, Comm. Math. Phys., 40:2 (1975), 147–151 | DOI | MR | Zbl
[8] G. Lindblad, “Expectations and entropy inequalities for finite quantum systems”, Comm. Math. Phys., 39:2 (1974), 111–119 | DOI | MR | Zbl
[9] D. Petz, “Sufficiency of channels over von Neumann algebras”, Quart. J. Math. Oxford Ser. (2), 39:153 (1988), 97–108 | DOI | MR | Zbl
[10] D. Sutter, M. Tomamichel and A. W. Harrow, “Strengthened monotonicity of relative entropy via pinched Petz recovery map”, IEEE Trans. Inform. Theory, 62:5 (2016), 2907–2913 | DOI | MR | Zbl
[11] M. M. Wilde, “Recoverability in quantum information theory”, Proc. A, 471:2182 (2015), 20150338, 19 pp. | DOI | MR | Zbl
[12] M. Junge, R. Renner, D. Sutter, M. M. Wilde and A. Winter, “Universal recovery maps and approximate sufficiency of quantum relative entropy”, Ann. Henri Poincaré, 19:10 (2018), 2955–2978 | DOI | MR | Zbl
[13] M. E. Shirokov, “Strong convergence of quantum channels: continuity of the Stinespring dilation and discontinuity of the unitary dilation”, J. Math. Phys., 61:8 (2020), 082204, 14 pp. | DOI | MR | Zbl
[14] A. S. Holevo, Quantum systems, channels, information. A mathematical introduction, De Gruyter Stud. Math. Phys., 16, De Gruyter, Berlin, 2012, xiv+349 pp. | DOI | MR | Zbl
[15] M. E. Shirokov, “Convergence criterion for quantum relative entropy and its use”, Sb. Math., 213:12 (2022), 1740–1772 | DOI | MR | Zbl
[16] M. M. Wilde, Quantum information theory, Cambridge Univ. Press, Cambridge, 2013, xvi+655 pp. | DOI | MR | Zbl
[17] B. Simon, Operator theory, Compr. Course Anal., Part 4, Amer. Math. Soc., Providence, RI, 2015, xviii+749 pp. | DOI | MR | Zbl
[18] A. S. Holevo, “Some estimates for information quantity transmitted by quantum communication channel”, Problems Inform. Transmission, 9:3 (1973), 177–183 | MR | Zbl
[19] W. F. Stinespring, “Positive functions on $C^*$-algebras”, Proc. Amer. Math. Soc., 6:2 (1955), 211–216 | DOI | MR | Zbl
[20] G. F. Dell'Antonio, “On the limits of sequences of normal states”, Comm. Pure Appl. Math., 20:2 (1967), 413–429 | DOI | MR | Zbl
[21] M. J. Donald, “Further results on the relative entropy”, Math. Proc. Cambridge Philos. Soc., 101:2 (1987), 363–373 | DOI | MR | Zbl
[22] F. Buscemi and M. Horodecki, “Towards a unified approach to information-disturbance tradeoffs in quantum measurements”, Open Syst. Inf. Dyn., 16:1 (2009), 29–48 | DOI | MR | Zbl
[23] F. Buscemi, S. Das and M. M. Wilde, “Approximate reversibility in the context of entropy gain, information gain, and complete positivity”, Phys. Rev. A, 93:6 (2016), 062314, 11 pp. | DOI
[24] M. Berta, F. G. S. L. Brandao, C. Majenz and M. M. Wilde, Deconstruction and conditional erasure of quantum correlations, arXiv: 1609.06994
[25] Á. Capel, A. Lucia and D. Pérez-García, “Quantum conditional relative entropy and quasi-factorization of the relative entropy”, J. Phys. A, 51:48 (2018), 484001, 41 pp. | DOI | MR | Zbl
[26] T. S. Cubitt, M. B. Ruskai and G. Smith, “The structure of degradable quantum channels”, J. Math. Phys., 49:10 (2008), 102104, 27 pp. | DOI | MR | Zbl
[27] M. E. Shirokov, “Measures of correlations in infinite-dimensional quantum systems”, Sb. Math., 207:5 (2016), 724–768 | DOI | MR | Zbl
[28] M. E. Shirokov, “Correlation measures of a quantum state and information characteristics of a quantum channel”, J. Math. Phys., 64:11 (2023), 112201, 31 pp. | DOI | MR | Zbl
[29] M. E. Shirokov, “Convergence conditions for the quantum relative entropy and other applications of the generalized quantum Dini lemma”, Lobachevskii J. Math., 43:7 (2022), 1755–1777 | DOI | MR | Zbl
[30] M. Reed and B. Simon, Methods of modern mathematical physics, v. I, Functional analysis, Academic Press, Inc., New York–London, 1972, xvii+325 pp. | MR | Zbl
[31] M. E. Shirokov and A. V. Bulinski, “On quantum channels and operations preserving finiteness of the von Neumann entropy”, Lobachevskii J. Math., 41:12 (2020), 2383–2396 | DOI | MR | Zbl
[32] T. M. Cover and J. A. Thomas, Elements of information theory, 2nd ed., Wiley-Interscience [John Wiley Sons], Hoboken, NJ, 2006, xxiv+748 pp. | DOI | MR | Zbl
[33] C. M. Bishop, Pattern recognition and machine learning, Inf. Sci. Stat., Springer, New York, 2006, xx+738 pp. | MR | Zbl
[34] F. Nielsen, On the Kullback–Leibler divergence between location-scale densities, arXiv: 1904.10428
[35] V. I. Bogachev, Measure theory, v. II, Springer-Verlag, Berlin, 2007, xiv+575 pp. | DOI | MR | Zbl
[36] P. Billingsley, Convergence of probability measures, John Wiley Sons, Inc., New York–London–Sydney, 1968, xii+253 pp. | MR | Zbl
[37] Ch. Gerry and P. L. Knight, Introductory quantum optics, Cambridge Univ. Press, Cambridge, 2005, xiv+317 pp. | DOI
[38] R. J. Glauber, “Coherent and incoherent states of the radiation field”, Phys. Rev. (2), 131:6 (1963), 2766–2788 | DOI | MR | Zbl
[39] E. C. G. Sudarshan, “Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams”, Phys. Rev. Lett., 10:7 (1963), 277–279 | DOI | MR | Zbl
[40] M. E. Shirokov, “On lower semicontinuity of the quantum conditional mutual information and its corollaries”, Proc. Steklov Inst. Math., 313 (2021), 203–227 | DOI | MR | Zbl
[41] G. Lindblad, “Entropy, information and quantum measurements”, Comm. Math. Phys., 33:4 (1973), 305–322 | DOI | MR
[42] A. Bluhm, Á. Capel, P. Gondolf and A. Pérez-Hernández, “Continuity of quantum entropic quantities via almost convexity”, IEEE Trans. Inform. Theory, 69:9 (2023), 5869–5901 | DOI | MR | Zbl