Mots-clés : limit cycles, polycycles
@article{SM_2024_215_11_a3,
author = {A. V. Dukov},
title = {Saddle connections},
journal = {Sbornik. Mathematics},
pages = {1523--1548},
year = {2024},
volume = {215},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_11_a3/}
}
A. V. Dukov. Saddle connections. Sbornik. Mathematics, Tome 215 (2024) no. 11, pp. 1523-1548. http://geodesic.mathdoc.fr/item/SM_2024_215_11_a3/
[1] A. A. Andronov and E. A. Leontovich, “Generation of limit cycles from a separatrix forming a loop and from the separatrix of an equilibrium state of saddle-node type”, Amer. Math. Soc. Transl. Ser. 2, 33, Amer. Math. Soc., Providence, RI, 1963, 189–231 | DOI | MR | Zbl
[2] R. Abraham and J. Robbin, Transversal mappings and flows, W. A. Benjamin, Inc., New York–Amsterdam, 1967, x+161 pp. | MR | Zbl
[3] L. A. Cherkas, “The stability of singular cycles”, Differ. Equ., 4 (1972), 524–526 | MR | Zbl
[4] A. V. Dukov, Typical finite-parameter families of vector field on a two-dimensional sphere, Kandidat thesis, Moscow State University, Moscow, 2023, 84 pp. (Russian)
[5] A. V. Dukov, “Bifurcations of the ‘heart’ polycycle in generic 2-parameter families”, Trans. Moscow Math. Soc., 2018, 209–229 | DOI | MR | Zbl
[6] A. Dukov and Y. Ilyashenko, “Numeric invariants in semilocal bifurcations”, J. Fixed Point Theory Appl., 23:1 (2021), 3, 15 pp. | DOI | MR | Zbl
[7] Yu. Il'yashenko and S. Yakovenko, “Concerning the Hilbert sixteenth problem”, Concerning the Hilbert 16th problem, Amer. Math. Soc. Transl. Ser. 2, 165, Adv. Math. Sci., 23, Amer. Math. Soc., Providence, RI, 1995, 1–19 | DOI | MR | Zbl
[8] Yu. Ilyashenko, Yu. Kudryashov and I. Schurov, “Global bifurcations in the two-sphere: a new perspective”, Invent. Math., 213:2 (2018), 461–506 | DOI | MR | Zbl
[9] Yu. S. Il'yashenko and S. Yu. Yakovenko, “Finitely-smooth normal forms of local families of diffeomorphisms and vector fields”, Russian Math. Surveys, 46:1 (1991), 1–43 | DOI | MR | Zbl
[10] Yu. Ilyashenko and S. Yakovenko, “Finite cyclicity of elementary polycycles in generic families”, Concerning the Hilbert 16th problem, Amer. Math. Soc. Transl. Ser. 2, 165, Adv. Math. Sci., 23, Amer. Math. Soc., Providence, RI, 1995, 21–95 | DOI | MR | Zbl
[11] Yu. Ilyashenko and N. Solodovnikov, “Global bifurcations in generic one-parameter families with a separatrix loop on $S^2$”, Mosc. Math. J., 18:1 (2018), 93–115 | DOI | MR | Zbl
[12] Maoan Han, Yuhai Wu and Ping Bi, “Bifurcation of limit cycles near polycycles with $n$ vertices”, Chaos Solitons Fractals, 22:2 (2004), 383–394 | DOI | MR | Zbl
[13] V. Kaloshin, “The existential Hilbert 16-th problem and an estimate for cyclicity of elementary polycycles”, Invent. Math., 151:3 (2003), 451–512 | DOI | MR | Zbl
[14] Al Kelley, “The stable, center-stable, center, center-unstable, and unstable manifolds”: R. Abraham and J. Robbin, Transversal mappings and flows, W. A. Benjamin, Inc., New York–Amsterdam, 1967, 134–154 | MR | Zbl
[15] P. I. Kaleda and I. V. Shchurov, “Cyclicity of elementary polycycles with fixed number of singular points in generic $k$-parameter families”, St. Petersburg Math. J., 22:4 (2011), 557–571 | DOI | MR | Zbl
[16] A. Mourtada, “Cyclicité finie des polycycles hyperboliques de champs de vecteurs du plan. Algorithme de finitude”, Ann. Inst. Fourier (Grenoble), 41:3 (1991), 719–753 | DOI | MR | Zbl
[17] A. Mourtada, Polycycles hyperboliques génériques à trois ou quatre sommets, Thése de doctorat, Dijon, 1990 http://www.theses.fr/1990DIJOS028
[18] J. W. Reyn, “Generation of limit cycles from separatrix polygons in the phase plane”, Geometrical approaches to differential equations (Scheveningen 1979), Lecture Notes in Math., 810, Springer, Berlin, 1980, 264–289 pp. | DOI | MR | Zbl
[19] V. Sh. Roitenberg, Nonlocal two-parameter bifurcations on surfaces, Ph.D. dissertation, Yaroslavl' State Technology University, Yaroslavl', 2000, 187 pp. (Russian)
[20] J. Sotomayor, “Generic one-parameter families of vector fields on two-dimensional manifolds”, Inst. Hautes Études Sci. Publ. Math., 43 (1974), 5–46 | DOI | MR | Zbl
[21] S. I. Trifonov, “Cyclicity of elementary polycycles of generic smooth vector fields”, Proc. Steklov Inst. Math., 213 (1996), 141–199 | MR | Zbl