Saddle connections
Sbornik. Mathematics, Tome 215 (2024) no. 11, pp. 1523-1548

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that vector fields that are close to a fixed field with the same set of connections form a smooth Banach submanifold. A sufficient condition for the birth of saddle connections in a generic family is presented. The following result is proved: in a perturbation of a monodromic hyperbolic polycycle of $n$ connections in a generic family at least $n$ limit cycles can appear. Bibliography: 21 titles.
Keywords: separatrix connections, cyclicity.
Mots-clés : limit cycles, polycycles
@article{SM_2024_215_11_a3,
     author = {A. V. Dukov},
     title = {Saddle connections},
     journal = {Sbornik. Mathematics},
     pages = {1523--1548},
     publisher = {mathdoc},
     volume = {215},
     number = {11},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_11_a3/}
}
TY  - JOUR
AU  - A. V. Dukov
TI  - Saddle connections
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1523
EP  - 1548
VL  - 215
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_11_a3/
LA  - en
ID  - SM_2024_215_11_a3
ER  - 
%0 Journal Article
%A A. V. Dukov
%T Saddle connections
%J Sbornik. Mathematics
%D 2024
%P 1523-1548
%V 215
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_11_a3/
%G en
%F SM_2024_215_11_a3
A. V. Dukov. Saddle connections. Sbornik. Mathematics, Tome 215 (2024) no. 11, pp. 1523-1548. http://geodesic.mathdoc.fr/item/SM_2024_215_11_a3/