Saddle connections
Sbornik. Mathematics, Tome 215 (2024) no. 11, pp. 1523-1548
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that vector fields that are close to a fixed field with the same set of connections form a smooth Banach submanifold. A sufficient condition for the birth of saddle connections in a generic family is presented. The following result is proved: in a perturbation of a monodromic hyperbolic polycycle of $n$ connections in a generic family at least $n$ limit cycles can appear.
Bibliography: 21 titles.
Keywords:
separatrix connections, cyclicity.
Mots-clés : limit cycles, polycycles
Mots-clés : limit cycles, polycycles
@article{SM_2024_215_11_a3,
author = {A. V. Dukov},
title = {Saddle connections},
journal = {Sbornik. Mathematics},
pages = {1523--1548},
publisher = {mathdoc},
volume = {215},
number = {11},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_11_a3/}
}
A. V. Dukov. Saddle connections. Sbornik. Mathematics, Tome 215 (2024) no. 11, pp. 1523-1548. http://geodesic.mathdoc.fr/item/SM_2024_215_11_a3/