Classification of nonsingular four-dimensional flows with a untwisted saddle orbit
Sbornik. Mathematics, Tome 215 (2024) no. 11, pp. 1499-1522 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The topological equivalence of low-dimensional Morse–Smale flows without fixed point (NMS-flows) under assumptions of various generality is the subject of a number of publications. Starting from dimension 4, there are only few results on classification. However, it is known that there exists nonsingular flows with wildly embedded invariant saddle manifolds. In this paper the class of nonsingular Morse–Smale flows on closed orientable 4-manifolds with a unique saddle orbit which is, moreover, nontwisted, is considered. It is shown that the equivalence class of a certain knot embedded in $\mathbb S^2\times\mathbb S^1$ is a complete invariant of such a flow. Given a knot in $\mathbb S^2\times\mathbb S^1$, a standard representative in the class of flows under consideration is constructed. The supporting manifold of all such flows is shown to be the manifold $\mathbb S^3\times\mathbb S^1$. Bibliography: 24 titles.
Keywords: nonsingular flow, Morse–Smale flow.
@article{SM_2024_215_11_a2,
     author = {V. D. Galkin and O. V. Pochinka and D. D. Shubin},
     title = {Classification of nonsingular four-dimensional flows with a~untwisted saddle orbit},
     journal = {Sbornik. Mathematics},
     pages = {1499--1522},
     year = {2024},
     volume = {215},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_11_a2/}
}
TY  - JOUR
AU  - V. D. Galkin
AU  - O. V. Pochinka
AU  - D. D. Shubin
TI  - Classification of nonsingular four-dimensional flows with a untwisted saddle orbit
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1499
EP  - 1522
VL  - 215
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_11_a2/
LA  - en
ID  - SM_2024_215_11_a2
ER  - 
%0 Journal Article
%A V. D. Galkin
%A O. V. Pochinka
%A D. D. Shubin
%T Classification of nonsingular four-dimensional flows with a untwisted saddle orbit
%J Sbornik. Mathematics
%D 2024
%P 1499-1522
%V 215
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2024_215_11_a2/
%G en
%F SM_2024_215_11_a2
V. D. Galkin; O. V. Pochinka; D. D. Shubin. Classification of nonsingular four-dimensional flows with a untwisted saddle orbit. Sbornik. Mathematics, Tome 215 (2024) no. 11, pp. 1499-1522. http://geodesic.mathdoc.fr/item/SM_2024_215_11_a2/

[1] P. M. Akhmet'ev, T. V. Medvedev and O. V. Pochinka, “On the number of the classes of topological conjugacy of Pixton diffeomorphisms”, Qual. Theory Dyn. Syst., 20:3 (2021), 76, 15 pp. | DOI | MR | Zbl

[2] F. Bonahon and J.-P. Otal, “Scindements de Heegaard des espaces lenticulaires”, Ann. Sci. École Norm. Sup. (4), 16:3 (1983), 451–466 | DOI | MR | Zbl

[3] C. Bonatti and V. Z. Grines, “Knots as topological invariants for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602 | DOI | MR | Zbl

[4] C. Bonatti, V. Grines and O. Pochinka, “Topological classification of Morse–Smale diffeomorphisms on 3-manifolds”, Duke Math. J., 168:13 (2019), 2507–2558 | DOI | MR | Zbl

[5] J. Franks, “Nonsingular Smale flows on $S^3$”, Topology, 24:3 (1985), 265–282 | DOI | MR | Zbl

[6] D. Gabai, “Foliations and the topology of 3-manifolds. III”, J. Differential Geom., 26:3 (1987), 479–536 | DOI | MR | Zbl

[7] C. McA. Gordon and J. Luecke, “Knots are determined by their complements”, J. Amer. Math. Soc., 2:2 (1989), 371–415 | DOI | MR | Zbl

[8] V. Grines, Yu. Levchenko, V. Medvedev and O. Pochinka, “The topological classification of structurally stable 3-diffeomorphisms with two-dimensional basic sets”, Nonlinearity, 28:11 (2015), 4081–4102 | DOI | MR | Zbl

[9] V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev and O. V. Pochinka, “Global attractor and repeller of Morse–Smale diffeomorphisms”, Proc. Steklov Inst. Math., 271 (2010), 103–124 | DOI | MR | Zbl

[10] W. Hurewicz and H. Wallman, Dimension theory, PMS-4, Princeton Math. Ser., 63, Reprint of the 1948 ed., Princeton Univ. Press, Princeton, NJ, 2015, vii+165 pp. | DOI | MR | Zbl

[11] M. C. Irwin, “A classification of elementary cycles”, Topology, 9:1 (1970), 35–47 | DOI | MR | Zbl

[12] N. L. Max, “Homeomorphisms of $S^{n}\times S^{1}$”, Bull. Amer. Math. Soc., 73:6 (1967), 939–942 | DOI | MR | Zbl

[13] W. D. Neumann, Notes on geometry and 3-manifolds, Citeseer, 1996

[14] E. M. Osenkov and O. V. Pochinka, Morse–Smale 3-diffeomorphisms with saddles of the same unstable manifold dimension, arXiv: 2310.08476

[15] D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR | Zbl

[16] O. V. Pochinka and D. D. Shubin, “On 4-dimensional flows with wildly embedded invariant manifolds of a periodic orbit”, Appl. Math. Nonlinear Sci., 5:2 (2020), 261–266 | DOI | MR | Zbl

[17] O. V. Pochinka and D. D. Shubin, “Non-singular Morse–Smale flows on $n$-manifolds with attractor-repeller dynamics”, Nonlinearity, 35:3 (2022), 1485–1499 | DOI | MR | Zbl

[18] D. Rolfsen, Knots and links, AMS Chelsea Publ. Ser., 346, Reprint with corr. of the 1976 ed., Amer. Math. Soc., Providence, RI, 2003, ix+439 pp. | MR | Zbl

[19] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl

[20] Ya. L. Umanskiĭ, “Necessary and sufficient conditions for topological equivalence of three-dimensional Morse–Smale dynamical systems with a finite number of singular trajectories”, Math. USSR-Sb., 69:1 (1991), 227–253 | DOI | MR | Zbl

[21] V. Galkin, O. Pochinka and D. Shubin, Classification of NMS-flows with unique twisted saddle orbit on orientable 4-manifolds, arXiv: 2306.09125

[22] Bin Yu, “Behavior $0$ nonsingular Morse Smale flows on $S^3$”, Discrete Contin. Dyn. Syst., 36:1 (2016), 509–540 | DOI | MR | Zbl

[23] O. V. Pochinka and D. D. Shubin, “Nonsingular Morse–Smale flows with three periodic orbits on orientable $3$-manifolds”, Math. Notes, 112:3 (2022), 436–450 | DOI | MR | Zbl

[24] A. Prishlyak, “Complete topological invariants of Morse–Smale flows and handle decompositions of 3-manifolds”, J. Math. Sci. (N.Y.), 144:5 (2007), 4492–4499 | DOI | MR | Zbl