@article{SM_2024_215_11_a2,
author = {V. D. Galkin and O. V. Pochinka and D. D. Shubin},
title = {Classification of nonsingular four-dimensional flows with a~untwisted saddle orbit},
journal = {Sbornik. Mathematics},
pages = {1499--1522},
year = {2024},
volume = {215},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_11_a2/}
}
TY - JOUR AU - V. D. Galkin AU - O. V. Pochinka AU - D. D. Shubin TI - Classification of nonsingular four-dimensional flows with a untwisted saddle orbit JO - Sbornik. Mathematics PY - 2024 SP - 1499 EP - 1522 VL - 215 IS - 11 UR - http://geodesic.mathdoc.fr/item/SM_2024_215_11_a2/ LA - en ID - SM_2024_215_11_a2 ER -
V. D. Galkin; O. V. Pochinka; D. D. Shubin. Classification of nonsingular four-dimensional flows with a untwisted saddle orbit. Sbornik. Mathematics, Tome 215 (2024) no. 11, pp. 1499-1522. http://geodesic.mathdoc.fr/item/SM_2024_215_11_a2/
[1] P. M. Akhmet'ev, T. V. Medvedev and O. V. Pochinka, “On the number of the classes of topological conjugacy of Pixton diffeomorphisms”, Qual. Theory Dyn. Syst., 20:3 (2021), 76, 15 pp. | DOI | MR | Zbl
[2] F. Bonahon and J.-P. Otal, “Scindements de Heegaard des espaces lenticulaires”, Ann. Sci. École Norm. Sup. (4), 16:3 (1983), 451–466 | DOI | MR | Zbl
[3] C. Bonatti and V. Z. Grines, “Knots as topological invariants for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602 | DOI | MR | Zbl
[4] C. Bonatti, V. Grines and O. Pochinka, “Topological classification of Morse–Smale diffeomorphisms on 3-manifolds”, Duke Math. J., 168:13 (2019), 2507–2558 | DOI | MR | Zbl
[5] J. Franks, “Nonsingular Smale flows on $S^3$”, Topology, 24:3 (1985), 265–282 | DOI | MR | Zbl
[6] D. Gabai, “Foliations and the topology of 3-manifolds. III”, J. Differential Geom., 26:3 (1987), 479–536 | DOI | MR | Zbl
[7] C. McA. Gordon and J. Luecke, “Knots are determined by their complements”, J. Amer. Math. Soc., 2:2 (1989), 371–415 | DOI | MR | Zbl
[8] V. Grines, Yu. Levchenko, V. Medvedev and O. Pochinka, “The topological classification of structurally stable 3-diffeomorphisms with two-dimensional basic sets”, Nonlinearity, 28:11 (2015), 4081–4102 | DOI | MR | Zbl
[9] V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev and O. V. Pochinka, “Global attractor and repeller of Morse–Smale diffeomorphisms”, Proc. Steklov Inst. Math., 271 (2010), 103–124 | DOI | MR | Zbl
[10] W. Hurewicz and H. Wallman, Dimension theory, PMS-4, Princeton Math. Ser., 63, Reprint of the 1948 ed., Princeton Univ. Press, Princeton, NJ, 2015, vii+165 pp. | DOI | MR | Zbl
[11] M. C. Irwin, “A classification of elementary cycles”, Topology, 9:1 (1970), 35–47 | DOI | MR | Zbl
[12] N. L. Max, “Homeomorphisms of $S^{n}\times S^{1}$”, Bull. Amer. Math. Soc., 73:6 (1967), 939–942 | DOI | MR | Zbl
[13] W. D. Neumann, Notes on geometry and 3-manifolds, Citeseer, 1996
[14] E. M. Osenkov and O. V. Pochinka, Morse–Smale 3-diffeomorphisms with saddles of the same unstable manifold dimension, arXiv: 2310.08476
[15] D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR | Zbl
[16] O. V. Pochinka and D. D. Shubin, “On 4-dimensional flows with wildly embedded invariant manifolds of a periodic orbit”, Appl. Math. Nonlinear Sci., 5:2 (2020), 261–266 | DOI | MR | Zbl
[17] O. V. Pochinka and D. D. Shubin, “Non-singular Morse–Smale flows on $n$-manifolds with attractor-repeller dynamics”, Nonlinearity, 35:3 (2022), 1485–1499 | DOI | MR | Zbl
[18] D. Rolfsen, Knots and links, AMS Chelsea Publ. Ser., 346, Reprint with corr. of the 1976 ed., Amer. Math. Soc., Providence, RI, 2003, ix+439 pp. | MR | Zbl
[19] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl
[20] Ya. L. Umanskiĭ, “Necessary and sufficient conditions for topological equivalence of three-dimensional Morse–Smale dynamical systems with a finite number of singular trajectories”, Math. USSR-Sb., 69:1 (1991), 227–253 | DOI | MR | Zbl
[21] V. Galkin, O. Pochinka and D. Shubin, Classification of NMS-flows with unique twisted saddle orbit on orientable 4-manifolds, arXiv: 2306.09125
[22] Bin Yu, “Behavior $0$ nonsingular Morse Smale flows on $S^3$”, Discrete Contin. Dyn. Syst., 36:1 (2016), 509–540 | DOI | MR | Zbl
[23] O. V. Pochinka and D. D. Shubin, “Nonsingular Morse–Smale flows with three periodic orbits on orientable $3$-manifolds”, Math. Notes, 112:3 (2022), 436–450 | DOI | MR | Zbl
[24] A. Prishlyak, “Complete topological invariants of Morse–Smale flows and handle decompositions of 3-manifolds”, J. Math. Sci. (N.Y.), 144:5 (2007), 4492–4499 | DOI | MR | Zbl