Kolmogorov widths of a Sobolev class with constraints on derivatives in different metrics
Sbornik. Mathematics, Tome 215 (2024) no. 11, pp. 1468-1498 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain order estimates for the Kolmogorov widths of periodic Sobolev classes defined by constraints on the $L_{p_j}$-norm of the $r_j$th derivative with respect to the $j$th variable for $1\le j\le d$. Bibliography: 31 titles.
Keywords: Kolmogorov width
Mots-clés : anisotropic Sobolev class.
@article{SM_2024_215_11_a1,
     author = {A. A. Vasil'eva},
     title = {Kolmogorov widths of {a~Sobolev} class with constraints on derivatives in different metrics},
     journal = {Sbornik. Mathematics},
     pages = {1468--1498},
     year = {2024},
     volume = {215},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_11_a1/}
}
TY  - JOUR
AU  - A. A. Vasil'eva
TI  - Kolmogorov widths of a Sobolev class with constraints on derivatives in different metrics
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1468
EP  - 1498
VL  - 215
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_11_a1/
LA  - en
ID  - SM_2024_215_11_a1
ER  - 
%0 Journal Article
%A A. A. Vasil'eva
%T Kolmogorov widths of a Sobolev class with constraints on derivatives in different metrics
%J Sbornik. Mathematics
%D 2024
%P 1468-1498
%V 215
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2024_215_11_a1/
%G en
%F SM_2024_215_11_a1
A. A. Vasil'eva. Kolmogorov widths of a Sobolev class with constraints on derivatives in different metrics. Sbornik. Mathematics, Tome 215 (2024) no. 11, pp. 1468-1498. http://geodesic.mathdoc.fr/item/SM_2024_215_11_a1/

[1] È. M. Galeev, “Approximation by Fourier sums of classes of functions with several bounded derivatives”, Math. Notes, 23:2 (1978), 109–117 | DOI | MR | Zbl

[2] È. M. Galeev, “The Kolmogorov diameter of the intersection of classes of periodic functions and of finite-dimensional sets”, Math. Notes, 29:5 (1981), 382–388 | DOI | MR | Zbl

[3] È. M. Galeev, “Kolmogorov widths of classes of periodic functions of one and several variables”, Math. USSR-Izv., 36:2 (1991), 435–448 | DOI | MR | Zbl

[4] R. Algervik, Embedding theorems for mixed norm spaces and applications, Ph.D. thesis, Karlstad Univ. Studies, Karlstad, 2010, iii+134 pp.

[5] V. I. Kolyada, “Embeddings of fractional Sobolev spaces and estimates of Fourier transforms”, Sb. Math., 192:7 (2001), 979–1000 | DOI | MR | Zbl

[6] V. L. Oleinik, “Estimates for the $n$-widths of compact sets of differentiate functions in spaces with weight functions”, J. Soviet Math., 10:2 (1978), 286–298 | DOI | MR | Zbl

[7] O. V. Besov, V. P. Il'in and S. M. Nikol'skiĭ, Integral representations of functions and imbedding theorems, v. I, II, Scripta Ser. in Math., V. H. Winston Sons, Washington, DC; Halsted Press [John Wiley Sons], New York–Toronto, ON–London, 1978, 1979, viii+345 pp., viii+311 pp. | MR | MR | MR | Zbl | Zbl

[8] O. V. Besov, “The Littlewood–Paley theorem for a mixed norm”, Proc. Steklov Inst. Math., 170 (1987), 33–38 | MR | Zbl

[9] G. Akishev, “Estimates for the Kolmogorov widths of the Nikol'skii–Besov–Amanov classes in the Lorentz space”, Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 1–12 | DOI | MR | Zbl

[10] G. A. Akishev, “On estimates of the order of the best $M$-term approximations of functions of several variables in the anisotropic Lorentz–Zygmund space”, Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform., 23:2 (2023), 142–156 (Russian) | DOI | MR | Zbl

[11] G. A. Akishev, “On estimates for orders of best $M$-term approximations of multivariate functions in anisotropic Lorentz–Karamata spaces”, Ufa Math. J., 15:1 (2023), 1–20 | DOI | MR | Zbl

[12] A. Pietsch, “$s$-numbers of operators in Banach spaces”, Studia Math., 51 (1974), 201–223 | DOI | MR | Zbl

[13] M. I. Stesin, “Aleksandrov diameters of finite-dimensional sets and classes of smooth functions”, Soviet Math. Dokl., 16 (1975), 252–256 | MR | Zbl

[14] B. S. Kašin (Kashin), “Diameters of some finite-dimensional sets and classes of smooth functions”, Math. USSR-Izv., 11:2 (1977), 317–333 | DOI | MR | Zbl

[15] E. D. Gluskin, “On some finite-dimensional problems of the theory of widths”, Vestn. Leningrad. Univ., 13 (1981), 5–10 (Russian) | Zbl

[16] E. D. Gluskin, “Norms of random matrices and widths of finite-dimensional sets”, Math. USSR-Sb., 48:1 (1984), 173–182 | DOI | MR | Zbl

[17] A. Yu. Garnaev and E. D. Gluskin, “On widths of the Euclidean ball”, Soviet Math. Dokl., 30 (1984), 200–204 | MR | Zbl

[18] V. M. Tikhomirov, “Approximation theory”, Analysis, v. II, Encyclopaedia Math. Sci., 14, Convex analysis and approximation theory, Springer-Verlag, Berlin, 1990, 93–243 | DOI | MR | MR | Zbl | Zbl

[19] A. Pinkus, $n$-widths in approximation theory, Ergeb. Math. Grenzgeb. (3), 7, Springer-Verlag, Berlin, 1985, x+291 pp. | DOI | MR | Zbl

[20] V. Temlyakov, Multivariate approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge Univ. Press, Cambridge, 2018, xvi+534 pp. | DOI | MR | Zbl

[21] È. M. Galeev, “Kolmogorov widths in the space $\widetilde L_q$ of the classes $\widetilde W_p^{\overline\alpha}$ and $\widetilde H_p^{\overline\alpha}$ of periodic functions of several variables”, Math. USSR-Izv., 27:2 (1986), 219–237 | DOI | MR | Zbl

[22] È. M. Galeev, “Estimates of Kolmogorov diameters of the classes of periodic functions of several variables with low order of smoothness”, Moscow Univ. Math. Bull., 42:1 (1987), 32–36 | MR | Zbl

[23] V. N. Temlyakov, “Approximation of periodic functions of several variables by trigonometric polynomials, and widths of some classes of functions”, Math. USSR-Izv., 27:2 (1986), 285–322 | DOI | MR | Zbl

[24] V. N. Temlyakov, “Approximation of functions with a bounded mixed derivative”, Proc. Steklov Inst. Math., 178 (1989), 1–121 | MR | Zbl

[25] È. M. Galeev, “Widths of classes of functions and finite-dimensional sets”, Vladikavkaz. Mat. Zh., 13:2 (2011), 3–14 (Russian) | MR | Zbl

[26] A. A. Vasil'eva, “Kolmogorov widths of an intersection of a finite family of Sobolev classes”, Izv. Math., 88:1 (2024), 18–42 | DOI | MR | Zbl

[27] S. M. Nikol'skiĭ, Approximation of functions of several variables and imbedding theorems, Grundlehren Math. Wiss., 205, Springer-Verlag, New York–Heidelberg, 1975, viii+418 pp. | DOI | MR | Zbl

[28] A. Zygmund, Trigonometric series, v. I, II, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp., vii+354 pp. | MR | Zbl

[29] A. A. Vasil'eva, “Kolmogorov widths of intersections of finite-dimensional balls”, J. Complexity, 72 (2022), 101649, 15 pp. | DOI | MR | Zbl

[30] E. D. Gluskin, “Intersections of a cube with an octahedron are poorly approximated by subspaces of small dimension”, Approximation of functions by special classes of operators, Ministry of Education of RSFSR, Vologda Pedagogical Institute, Vologda, 1987, 35–41 (Russian) | MR | Zbl

[31] Yu. V. Malykhin and K. S. Ryutin, “The product of octahedra is badly approximated in the $\ell_{2,1}$-metric”, Math. Notes, 101:1 (2017), 94–99 | DOI | MR | Zbl