$n$-valued groups, branched coverings and hyperbolic 3-manifolds
Sbornik. Mathematics, Tome 215 (2024) no. 11, pp. 1441-1467 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The theory of $n$-valued groups and its applications is developed by going over from groups defined axiomatically to combinatorial groups defined by generators and relations. A wide class of cyclic $n$-valued groups is introduced on the basis of cyclically presented groups. The best-known cyclically presented groups are the Fibonacci groups introduced by Conway. The problem of the existence of the orbit space of $n$-valued groups is related to the problem of the integrability of $n$-valued dynamics. Conditions for the existence of such spaces are presented. Actions of cyclic $n$-valued groups on $\mathbb R^3$ with orbit space homeomorphic to $S^3$ are constructed. The projections $\mathbb R^3 \to S^3$ onto the orbit space are shown to be connected, by means of commutative diagrams, with coverings of the sphere $S^3$ by three-dimensional compact hyperbolic manifolds which are cyclically branched along a hyperbolic knot. Bibliography: 54 titles.
Keywords: $n$-valued group, cyclically presented group, branched cyclic covering, three-dimensional manifold, knot.
Mots-clés : Fibonacci group
@article{SM_2024_215_11_a0,
     author = {V. M. Buchstaber and A. Yu. Vesnin},
     title = {$n$-valued groups, branched coverings and hyperbolic 3-manifolds},
     journal = {Sbornik. Mathematics},
     pages = {1441--1467},
     year = {2024},
     volume = {215},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_11_a0/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - A. Yu. Vesnin
TI  - $n$-valued groups, branched coverings and hyperbolic 3-manifolds
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1441
EP  - 1467
VL  - 215
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_11_a0/
LA  - en
ID  - SM_2024_215_11_a0
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A A. Yu. Vesnin
%T $n$-valued groups, branched coverings and hyperbolic 3-manifolds
%J Sbornik. Mathematics
%D 2024
%P 1441-1467
%V 215
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2024_215_11_a0/
%G en
%F SM_2024_215_11_a0
V. M. Buchstaber; A. Yu. Vesnin. $n$-valued groups, branched coverings and hyperbolic 3-manifolds. Sbornik. Mathematics, Tome 215 (2024) no. 11, pp. 1441-1467. http://geodesic.mathdoc.fr/item/SM_2024_215_11_a0/

[1] V. M. Buhštaber (Buchstaber) and S. P. Novikov, “Formal groups, power systems and Adams operators”, Math. USSR-Sb., 13:1 (1971), 80–116 | DOI | MR | Zbl

[2] V. M. Buhštaber (Buchstaber), “Two-valued formal groups. Algebraic theory and applications to cobordism. I”, Math. USSR-Izv., 9:5 (1975), 987–1006 | DOI | MR | Zbl

[3] V. M. Buhštaber (Buchstaber), “Two-valued formal groups. Algebraic theory and applications to cobordism. II”, Math. USSR-Izv., 10:2 (1976), 271–308 | DOI | MR | Zbl

[4] V. M. Buhštaber (Buchstaber), “Topological applications of the theory of two-valued formal groups”, Math. USSR-Izv., 12:1 (1978), 125–177 | DOI | MR | Zbl

[5] V. M. Bukhshtaber (Buchstaber), “Functional equations associated with addition theorems for elliptic functions and two-valued algebraic groups”, Russian Math. Surveys, 45:3 (1990), 213–215 | DOI | MR | Zbl

[6] V. M. Buchstaber and E. G. Rees, “Multivalued groups, their representations and Hopf algebras”, Transform. Groups, 2:4 (1997), 325–349 | DOI | MR | Zbl

[7] V. M. Buchstaber and E. G. Rees, “Frobenius $n$-homomorphisms, transfers and branched coverings”, Math. Proc. Cambridge Philos. Soc., 144:1 (2008), 1–12 | DOI | MR | Zbl

[8] V. M. Buchstaber and A. P. Veselov, “Integrable correspondences and algebraic representations of multivalued groups”, Int. Math. Res. Not. IMRN, 1996:8 (1996), 381–400 | DOI | MR | Zbl

[9] V. M. Buchstaber and V. Dragović, “Two-valued groups, Kummer varieties, and integrable billiards”, Arnold Math. J., 4:1 (2018), 27–57 | DOI | MR | Zbl

[10] V. M. Buchstaber, A. P. Veselov and A. A. Gaifullin, “Classification of involutive commutative two-valued groups”, Russian Math. Surveys, 77:4 (2022), 651–727 | DOI | MR | Zbl

[11] G. Higman, “A finitely generated infinite simple group”, J. London Math. Soc., 26:1 (1951), 61–64 | DOI | MR | Zbl

[12] D. L. Johnson, J. W. Wamsley and D. Wright, “The Fibonacci groups”, Proc. London Math. Soc. (3), 29:4 (1974), 577–592 | DOI | MR | Zbl

[13] H. Helling, A. C. Kim and J. L. Mennicke, “A geometric study of Fibonacci groups”, J. Lie Theory, 8:1 (1998), 1–23 | MR | Zbl

[14] V. G. Bardakov and A. Yu. Vesnin, “A generalization of Fibonacci groups”, Algebra and Logic, 42:2 (2003), 73–91 | DOI | MR | Zbl

[15] C. Maclachlan and A. W. Reid, “Generalized Fibonacci manifolds”, Transform. Groups, 2:2 (1997), 165–182 | DOI | MR | Zbl

[16] A. Szczepański and A. Vesnin, “On generalized Fibonacci groups with an odd number of generators”, Comm. Algebra, 28:2 (2000), 959–965 | DOI | MR | Zbl

[17] J. H. Conway, “Advanced problem 5327”, in “Advanced problems: 5320–5329”, Amer. Math. Monthly, 72:8 (1965), 915 | DOI | MR

[18] J. H. Conway, J. A. Wenzel, R. C. Lyndon and H. Flanders, “5327”, in “Solutions of advanced problems”, Amer. Math. Monthly, 74:1 (1967), 91–93 | DOI | MR

[19] G. Williams, “Groups of Fibonacci type revisited”, Internat. J. Algebra Comput., 22:08 (2012), 1240002, 19 pp. | DOI | MR | Zbl

[20] A. J. Sieradski, “Combinatorial squashings, 3-manifolds, and the third homology of groups”, Invent. Math., 84:1 (1986), 121–139 | DOI | MR | Zbl

[21] A. Yu. Vesnin and A. C. Kim, “Fractional Fibonacci groups and manifolds”, Siberian Math. J., 39:4 (1998), 655–664 | DOI | MR | Zbl

[22] M. F. Newman, “Proving a group infinite”, Arch. Math. (Basel), 54:3 (1990), 209–211 | DOI | MR | Zbl

[23] V. Noferini and G. Williams, “Cyclically presented groups as labelled oriented graph groups”, J. Algebra, 605 (2022), 179–198 | DOI | MR | Zbl

[24] W. A. Bogley, “On shift dynamics for cyclically presented groups”, J. Algebra, 418 (2014), 154–173 | DOI | MR | Zbl

[25] K. McDernott, Topological and dynamical properties of cyclically presented groups, Ph.D. thesis, Oregon State Univ., 2017, 111 pp.

[26] V. M. Buchstaber, S. A. Evdokimov, I. N. Ponomarenko and A. M. Vershik, “Combinatorial algebras and multivalued involutive groups”, Funct. Anal. Appl., 30:3 (1996), 158–162 | DOI | MR | Zbl

[27] J. Howie and G. Williams, “Fibonacci type presentations and 3-manifolds”, Topology Appl., 215 (2017), 24–34 | DOI | MR | Zbl

[28] A. Cavicchioli, F. Hegenbarth and A. C. Kim, “A geometric study of Sieradski groups”, Algebra Colloq., 5:2 (1998), 203–217 | MR | Zbl

[29] A. C. Kim and A. Vesnin, “Cyclically presented groups and Takahashi manifolds”, Analysis of discrete groups, II (Kyoto 1996), Sūrikaisekikenkyūsho Kōkyūroku, 1022 (1997), 200–212 http://hdl.handle.net/2433/61691 | MR | Zbl

[30] M. Mulazzani and A. Vesnin, “Generalized Takahashi manifolds”, Osaka J. Math., 39:3 (2002), 705–721 | MR | Zbl

[31] V. M. Buchstaber, “$n$-valued groups: theory and applications”, Mosc. Math. J., 6:1 (2006), 57–84 | DOI | MR | Zbl

[32] H. Behravesh and A. Borovik, “A note on multivalued groups”, Ric. Mat., 61:2 (2012), 245–253 | DOI | MR | Zbl

[33] E. Bannai and T. Ito, Algebraic combinatorics. I. Association schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984, xxiv+425 pp. | MR | Zbl

[34] A. A. Gaifullin, “Commutativity of involutive two-valued groups”, Russian Math. Surveys, 79:2 (2024), 363–365 | DOI | MR

[35] M. Edjvet, P. Hammond and N. Thomas, “Cyclic presentations of the trivial group”, Exp. Math., 10:2 (2001), 303–306 | DOI | MR | Zbl

[36] M. I. Kornev, “$n$-valued coset groups and dynamics”, Math. Notes, 116:1 (2024), 66–76 | DOI

[37] A. Dold, “Ramified coverings, orbit projections and symmetric powers”, Math. Proc. Cambridge Philos. Soc., 99:1 (1986), 65–72 | DOI | MR | Zbl

[38] R. Benedetti and C. Petronio, Lectures on hyperbolic geometry, Universitext, Springer-Verlag, Berlin, 1992, xiv+330 pp. | DOI | MR | Zbl

[39] J. G. Ratcliffe, Foundations of hyperbolic manifolds, Grad. Texts in Math., 149, Springer-Verlag, New York, 1994, xii+747 pp. | DOI | MR | Zbl

[40] R. H. Fox, “Covering spaces with singularities”, Algebraic geometry and topology, A symposium in honor of S. Lefschetz, Princeton Math. Ser., 12, Princeton Univ. Press, Princeton, NJ, 1957, 243–257 | MR | Zbl

[41] D. V. Gugnin, “Topological applications of graded Frobenius $n$-homomorphisms”, Trans. Moscow Math. Soc., 72 (2011), 97–142 | DOI | MR | Zbl

[42] M. Mulazzani and A. Vesnin, “The many faces of cyclic branched coverings of 2-bridge knots and links”, Atti Sem. Mat. Fis. Univ. Modena, 49 (2001), 177–215 | MR | Zbl

[43] M. Boileau and J. Porti, Geometrization of 3-orbifolds of cyclic type, Astérisque, 272, Soc. Math. France, Paris, 2001, vi+208 pp. | MR | Zbl

[44] A. Kawauchi, A survey of knot theory, Transl. from the Japan., Birkhäuser Verlag, Basel, 1996, xxii+420 pp. | MR | Zbl

[45] A. Yu. Vesnin and A. D. Mednykh, “Hyperbolic volumes of Fibonacci manifolds”, Siberian Math. J., 36:2 (1995), 235–245 | DOI | MR | Zbl

[46] W. Hantzsche and H. Wendt, “Dreidimensionale euklidische Raumformen”, Math. Ann., 110:1 (1935), 593–611 | DOI | MR | Zbl

[47] B. Zimmermann, “On the Hantzsche–Wendt manifold”, Monatsh. Math., 110:3–4 (1990), 321–327 | DOI | MR | Zbl

[48] J. A. Wolf, Spaces of constant curvature, 2nd ed., Univ. California, Berkeley, CA, 1972, xv+408 pp. | MR | Zbl

[49] H. Seifert and W. Threlfall, Lehrbuch der Topologie, B. G. Teubner, Leipzig, 1934, iv+353 pp. | Zbl

[50] H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia, “The arithmeticity of the figure eight knot orbifolds”, Topology{'}90 (Columbus, OH 1990), Ohio State Univ. Math. Res. Inst. Publ., 1, Walter de Gruyter Co., Berlin, 1992, 169–183 | MR | Zbl

[51] A. Yu. Vesnin and A. A. Rasskazov, “Isometries of hyperbolic Fibonacci manifolds”, Siberian Math. J., 40:1 (1999), 9–22 | DOI | MR | Zbl

[52] A. Whittemore, “On representations of the groups of Listing's knot by subgroups of $SL(2,C)$”, Proc. Amer. Math. Soc., 40:2 (1973), 378–382 | DOI | MR | Zbl

[53] M. Dehn, “Die beiden Kleeblattschlingen”, Math. Ann., 75:3 (1914), 402–413 | DOI | MR

[54] W. Magnus, “Untersuchungen über einige unendliche diskontinuierliche Gruppen”, Math. Ann., 105:1 (1931), 52–74 | DOI | MR | Zbl