Symplectic reduction and Lagrangian submanifolds of $\operatorname{Gr}(1, n)$
Sbornik. Mathematics, Tome 215 (2024) no. 10, pp. 1426-1439 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New examples of Lagrangian submanifolds of the complex Grassmannian $\operatorname{Gr}(1, n)$ with the standard Kähler form are presented. The scheme of their construction is based on two facts: first, we put forward a natural correspondence between the Lagrangian submanifolds of a symplectic manifold obtained by symplectic reduction and the Lagrangian submanifolds of a large symplectic manifold carrying a Hamiltonian action of some group, to which this reduction is applied; second, we show that for some choice of generators of the action of $\mathrm T^k$ on $\operatorname{Gr}(1, n)$, $k=2, \dots, n-1$, and for suitable values of the moment map there exists an isomorphism $\operatorname{Gr}(1, n)/\!/\mathrm T^k \cong \operatorname{tot}(\mathbb{P}(\tau) \times \dots \times\mathbb{P}(\tau) \to \operatorname{Gr}(1, n-k))$, where the total space of the Cartesian product of $k$ copies of the projectivization of the tautological bundle $\tau \to \operatorname{Gr}(1, n-k)$ is on the right. Combining these two facts we obtain a lower bound for the number of topologically distinct smooth Lagrangian submanifolds in the original Grassmannian $operatorname{Gr}(1, n)$. Bibliography: 5 titles.
Keywords: algebraic variety, symplectic form, Lagrangian submanifold, Grassmannian.
@article{SM_2024_215_10_a5,
     author = {N. A. Tyurin},
     title = {Symplectic reduction and {Lagrangian} submanifolds of~$\operatorname{Gr}(1, n)$},
     journal = {Sbornik. Mathematics},
     pages = {1426--1439},
     year = {2024},
     volume = {215},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_10_a5/}
}
TY  - JOUR
AU  - N. A. Tyurin
TI  - Symplectic reduction and Lagrangian submanifolds of $\operatorname{Gr}(1, n)$
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1426
EP  - 1439
VL  - 215
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_10_a5/
LA  - en
ID  - SM_2024_215_10_a5
ER  - 
%0 Journal Article
%A N. A. Tyurin
%T Symplectic reduction and Lagrangian submanifolds of $\operatorname{Gr}(1, n)$
%J Sbornik. Mathematics
%D 2024
%P 1426-1439
%V 215
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2024_215_10_a5/
%G en
%F SM_2024_215_10_a5
N. A. Tyurin. Symplectic reduction and Lagrangian submanifolds of $\operatorname{Gr}(1, n)$. Sbornik. Mathematics, Tome 215 (2024) no. 10, pp. 1426-1439. http://geodesic.mathdoc.fr/item/SM_2024_215_10_a5/

[1] A. E. Mironov, “New examples of Hamilton-minimal and minimal Lagrangian manifolds in $\mathbb C^n$ and $\mathbb C\mathrm P^n$”, Sb. Math., 195:1 (2004), 85–96 | DOI | MR | Zbl

[2] N. A. Tyurin, “Mironov Lagrangian cycles in algebraic varieties”, Sb. Math., 212:3 (2021), 389–398 | DOI | MR | Zbl

[3] Ph. Griffiths and J. Harris, Principles of algebraic geometry, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York, 1978, xii+813 pp. | MR | Zbl

[4] N. A. Tyurin, “Examples of Mironov cycles in Grassmannians”, Siberian Math. J., 62:2 (2021), 370–376 | DOI | MR | Zbl

[5] M. Audin, Torus actions on symplectic manifolds, Progr. Math., 93, 2nd rev. ed., Birkhäuser Verlag, Basel, 2004, viii+325 pp. | DOI | MR | Zbl