Sparse sampling recovery in integral norms on some function classes
Sbornik. Mathematics, Tome 215 (2024) no. 10, pp. 1406-1425

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a direct followup of a recent paper of the author. We continue to analyze approximation and recovery properties with respect to systems satisfying the universal sampling discretization property and a special unconditionality property. In addition, we assume that the subspace spanned by our system satisfies some Nikol'skii-type inequalities. We concentrate on recovery with an error measured in the $L_p$-norm for $2\le p\infty$. We apply a powerful nonlinear approximation method — the Weak Orthogonal Matching Pursuit (WOMP), also known under the name of the Weak Orthogonal Greedy Algorithm (WOGA). We establish that the WOMP based on good points for $L_2$-universal discretization provides good recovery in the $L_p$-norm for $2\le p\infty$. For our recovery algorithms we obtain both Lebesgue-type inequalities for individual functions and error bounds for special classes of multivariate functions. We combine two deep and powerful techniques — Lebesgue-type inequalities for the WOMP and the theory of universal sampling discretization — in order to obtain new results on sampling recovery. Bibliography: 19 titles.
Keywords: sampling discretization, universality, recovery.
@article{SM_2024_215_10_a4,
     author = {V. N. Temlyakov},
     title = {Sparse sampling recovery in integral norms on some function classes},
     journal = {Sbornik. Mathematics},
     pages = {1406--1425},
     publisher = {mathdoc},
     volume = {215},
     number = {10},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_10_a4/}
}
TY  - JOUR
AU  - V. N. Temlyakov
TI  - Sparse sampling recovery in integral norms on some function classes
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1406
EP  - 1425
VL  - 215
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_10_a4/
LA  - en
ID  - SM_2024_215_10_a4
ER  - 
%0 Journal Article
%A V. N. Temlyakov
%T Sparse sampling recovery in integral norms on some function classes
%J Sbornik. Mathematics
%D 2024
%P 1406-1425
%V 215
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_10_a4/
%G en
%F SM_2024_215_10_a4
V. N. Temlyakov. Sparse sampling recovery in integral norms on some function classes. Sbornik. Mathematics, Tome 215 (2024) no. 10, pp. 1406-1425. http://geodesic.mathdoc.fr/item/SM_2024_215_10_a4/