Two-sided estimate for the derivative of the sum of sine series with convex sequence of coefficients
Sbornik. Mathematics, Tome 215 (2024) no. 10, pp. 1374-1405 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The absolute value of the derivative of the sum of an arbitrary sine series with convex sequence of coefficients is estimated. The upper estimate is asymptotically sharp, and the lower estimate is order sharp. Bibliography: 13 titles.
Keywords: sine series, convex sequence of coefficients.
@article{SM_2024_215_10_a3,
     author = {A. Yu. Popov},
     title = {Two-sided estimate for the derivative of the sum of sine series with convex sequence of coefficients},
     journal = {Sbornik. Mathematics},
     pages = {1374--1405},
     year = {2024},
     volume = {215},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_10_a3/}
}
TY  - JOUR
AU  - A. Yu. Popov
TI  - Two-sided estimate for the derivative of the sum of sine series with convex sequence of coefficients
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1374
EP  - 1405
VL  - 215
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_10_a3/
LA  - en
ID  - SM_2024_215_10_a3
ER  - 
%0 Journal Article
%A A. Yu. Popov
%T Two-sided estimate for the derivative of the sum of sine series with convex sequence of coefficients
%J Sbornik. Mathematics
%D 2024
%P 1374-1405
%V 215
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2024_215_10_a3/
%G en
%F SM_2024_215_10_a3
A. Yu. Popov. Two-sided estimate for the derivative of the sum of sine series with convex sequence of coefficients. Sbornik. Mathematics, Tome 215 (2024) no. 10, pp. 1374-1405. http://geodesic.mathdoc.fr/item/SM_2024_215_10_a3/

[1] N. K. Bary, A treatise on trigonometric series, v. I, II, A Pergamon Press Book The Macmillan Co., New York, 1964, xxiii+553 pp., xix+508 pp. | MR | Zbl

[2] R. Salem, “Détermination de l'ordre de grandeur á l'origine de certaines séries trigonométriques”, C. R. Acad. Sci. Paris, 186 (1928), 1804–1806 | Zbl

[3] R. Salem, Essais sur les séries trigonométriques, Hermann et Cie., Paris, 1940, 87 pp. | MR | Zbl

[4] S. Izumi, “Some trigonometrical series. XII”, Proc. Japan Acad., 31:4 (1955), 207–209 | DOI | MR | Zbl

[5] S. A. Telyakovskiĭ, “On the behavior near the origin of the sine series with convex coefficients”, Publ. Inst. Math. (Beograd), 58(72) (1995), 43–50 | MR | Zbl

[6] A. Yu. Popov, “Estimates of the sums of sine series with monotone coefficients of certain classes”, Math. Notes, 74:6 (2003), 829–840 | DOI | MR | Zbl

[7] A. P. Solodov, “A sharp lower bound for the sum of a sine series with convex coefficients”, Sb. Math., 207:12 (2016), 1743–1777 | DOI | MR | Zbl

[8] A. P. Solodov, “Exact constants in Telyakovskii's two-sided estimate of the sum of a sine series with convex sequence of coefficients”, Math. Notes, 107:6 (2020), 988–1001 | DOI | DOI

[9] A. Yu. Popov, “Refinement of estimates of sums of sine series with monotone coefficients and cosine series with convex coefficients”, Math. Notes, 109:5 (2021), 808–818 | DOI | MR | Zbl

[10] S. A. Telyakovskiĭ, “On the behavior of sine series with convex coefficients near the origin”, Dokl. Math., 56:3 (1997), 913–914 | MR | Zbl

[11] A. Zygmund, Trigonometric series, v. I, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp. | MR | Zbl

[12] L. Leau, “Recherches des signularités d'une fonction définie par un développment de Taylor”, J. Math. Pures Appl. (5), 5 (1899), 365–425 | Zbl

[13] S. B. Stechkin, “Trigonometric series with monotone type coefficients”, Proc. Steklov Inst. Math. (Suppl.), 2001, suppl. 1, S214–S224 | MR | Zbl