On the connectedness of the automorphism group of an affine toric variety
Sbornik. Mathematics, Tome 215 (2024) no. 10, pp. 1351-1373

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a criterion for the automorphism group of an affine toric variety to be connected, stated in combinatorial terms and in terms of the divisor class group of the variety. We describe the component group of the automorphism group of a nondegenerate affine toric variety. In particular, we show that the number of connected components of the automorphism group is finite. Bibliography: 12 titles.
Keywords: toric variety, divisor class group, Cox ring.
Mots-clés : automorphism group
@article{SM_2024_215_10_a2,
     author = {V. V. Kikteva},
     title = {On the connectedness of the automorphism group of an affine toric variety},
     journal = {Sbornik. Mathematics},
     pages = {1351--1373},
     publisher = {mathdoc},
     volume = {215},
     number = {10},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_10_a2/}
}
TY  - JOUR
AU  - V. V. Kikteva
TI  - On the connectedness of the automorphism group of an affine toric variety
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1351
EP  - 1373
VL  - 215
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_10_a2/
LA  - en
ID  - SM_2024_215_10_a2
ER  - 
%0 Journal Article
%A V. V. Kikteva
%T On the connectedness of the automorphism group of an affine toric variety
%J Sbornik. Mathematics
%D 2024
%P 1351-1373
%V 215
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_10_a2/
%G en
%F SM_2024_215_10_a2
V. V. Kikteva. On the connectedness of the automorphism group of an affine toric variety. Sbornik. Mathematics, Tome 215 (2024) no. 10, pp. 1351-1373. http://geodesic.mathdoc.fr/item/SM_2024_215_10_a2/