Mots-clés : automorphism group
@article{SM_2024_215_10_a2,
author = {V. V. Kikteva},
title = {On the connectedness of the automorphism group of an affine toric variety},
journal = {Sbornik. Mathematics},
pages = {1351--1373},
year = {2024},
volume = {215},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_10_a2/}
}
V. V. Kikteva. On the connectedness of the automorphism group of an affine toric variety. Sbornik. Mathematics, Tome 215 (2024) no. 10, pp. 1351-1373. http://geodesic.mathdoc.fr/item/SM_2024_215_10_a2/
[1] C. P. Ramanujam, “A note on automorphism groups of algebraic varieties”, Math. Ann., 156 (1964), 25–33 | DOI | MR | Zbl
[2] V. L. Popov, “On infinite dimensional algebraic transformation groups”, Transform. Groups, 19:2 (2014), 549–568 | DOI | MR | Zbl
[3] I. V. Arzhantsev and S. A. Gaifullin, “Cox rings, semigroups and automorphisms of affine algebraic varieties”, Sb. Math., 201:1 (2010), 1–21 | DOI | MR | Zbl
[4] D. Cox, “The homogeneous coordinate ring of a toric variety”, J. Algebraic Geom., 4:1 (1995), 17–50 | MR | Zbl
[5] M. Demazure, “Sous-groupes algébriques de rang maximum du groupe de Cremona”, Ann. Sci. Éc. Norm. Supér. (4), 3:4 (1970), 507–588 | DOI | MR | Zbl
[6] I. R. Šafarevič (Shafarevich), “On some infinite-dimensional groups. II”, Math. USSR-Izv., 18:1 (1982), 185–194 | DOI | MR | Zbl
[7] D. A. Cox, J. B. Little and H. K. Schenck, Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011, xxiv+841 pp. | DOI | MR | Zbl
[8] W. Fulton, Introduction to toric varieties, Ann. of Math. Stud., 131, William Roever Lectures Geom., Princeton Univ. Press, Princeton, NJ, 1993, xii+157 pp. | DOI | MR | Zbl
[9] I. R. Shafarevich, Basic algebraic geometry, v. 1, Varieties in projective space, 3rd ed., Springer, Heidelberg, 2013, xviii+310 pp. ; v. 2, Schemes and complex manifolds, 3rd ed., 2013, xiv+262 pp. | DOI | MR | Zbl | DOI | MR | Zbl
[10] I. Arzhantsev and I. Bazhov, “On orbits of the automorphism group on an affine toric variety”, Cent. Eur. J. Math., 11:10 (2013), 1713–1724 | DOI | MR | Zbl
[11] I. Arzhantsev, U. Derenthal, J. Hausen and A. Laface, Cox rings, Cambridge Stud. Adv. Math., 144, Cambridge Univ. Press, Cambridge, 2015, viii+530 pp. | DOI | MR | Zbl
[12] I. Arzhantsev and M. Zaidenberg, “Acyclic curves and group actions on affine toric surfaces”, Affine algebraic geometry (Osaka 2011), World Sci. Publ., Hackensack, NJ, 2013, 1–41 | DOI | MR | Zbl