On the connectedness of the automorphism group of an affine toric variety
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 215 (2024) no. 10, pp. 1351-1373
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We obtain a criterion for the automorphism group of an affine toric variety to be connected, stated in combinatorial terms and in terms of the divisor class group of the variety. We describe the component group of the automorphism group of a nondegenerate affine toric variety. In particular, we show that the number of connected components of the automorphism group is finite.
Bibliography: 12 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
toric variety, divisor class group, Cox ring.
Mots-clés : automorphism group
                    
                  
                
                
                Mots-clés : automorphism group
@article{SM_2024_215_10_a2,
     author = {V. V. Kikteva},
     title = {On the connectedness of the automorphism group of an affine toric variety},
     journal = {Sbornik. Mathematics},
     pages = {1351--1373},
     publisher = {mathdoc},
     volume = {215},
     number = {10},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_10_a2/}
}
                      
                      
                    V. V. Kikteva. On the connectedness of the automorphism group of an affine toric variety. Sbornik. Mathematics, Tome 215 (2024) no. 10, pp. 1351-1373. http://geodesic.mathdoc.fr/item/SM_2024_215_10_a2/
