Some functionals for random walks and critical branching processes in an extremely unfavourable random environment
Sbornik. Mathematics, Tome 215 (2024) no. 10, pp. 1321-1350 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\{S_{n},\,n\geq 0\}$ be a random walk whose increment distribution belongs without centering to the domain of attraction of an $\alpha$-stable law, that is, there are scaling constants $a_{n}$ such that the sequence $S_{n}/a_{n}$, $n=1,2,\dots$, converges weakly, as $n\to\infty$, to a random variable having an $\alpha$-stable distribution. Let $S_{0}=0$, $$ L_{n}:=\min (S_{1},\dots,S_{n})\quad\text{and}\quad\tau_{n}:=\min \{ 0\leq k\leq n\colon S_{k}=\min (0,L_{n})\}. $$ Assuming that $S_{n}\leq h(n)$, where $h(n)$ is $o(a_{n})$ as $n\to\infty$ and the limit $\lim_{n\to\infty}h(n)\in [-\infty,+\infty]$ exists, we prove several limit theorems describing the asymptotic behaviour of the functionals $$ \mathbf{E}[ e^{\lambda S_{\tau_{n}}};\, S_{n}\leq h(n)], \qquad \lambda>0, $$ as $n\to\infty$. The results obtained are applied to study the survival probability of a critical branching process evolving in an extremely unfavourable random environment. Bibliography: 15 titles.
Keywords: stable random walks, branching processes, survival probability, extreme random environment.
@article{SM_2024_215_10_a1,
     author = {V. A. Vatutin and C. Dong and E. E. Dyakonova},
     title = {Some functionals for random walks and critical branching processes in an extremely unfavourable random environment},
     journal = {Sbornik. Mathematics},
     pages = {1321--1350},
     year = {2024},
     volume = {215},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_10_a1/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - C. Dong
AU  - E. E. Dyakonova
TI  - Some functionals for random walks and critical branching processes in an extremely unfavourable random environment
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1321
EP  - 1350
VL  - 215
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_10_a1/
LA  - en
ID  - SM_2024_215_10_a1
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A C. Dong
%A E. E. Dyakonova
%T Some functionals for random walks and critical branching processes in an extremely unfavourable random environment
%J Sbornik. Mathematics
%D 2024
%P 1321-1350
%V 215
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2024_215_10_a1/
%G en
%F SM_2024_215_10_a1
V. A. Vatutin; C. Dong; E. E. Dyakonova. Some functionals for random walks and critical branching processes in an extremely unfavourable random environment. Sbornik. Mathematics, Tome 215 (2024) no. 10, pp. 1321-1350. http://geodesic.mathdoc.fr/item/SM_2024_215_10_a1/

[1] V. I. Afanasyev, J. Geiger, G. Kersting and V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl

[2] V. I. Afanasyev, Ch. Böinghoff, G. Kersting and V. A. Vatutin, “Limit theorems for weakly subcritical branching processes in random environment”, J. Theoret. Probab., 25:3 (2012), 703–732 | DOI | MR | Zbl

[3] F. Caravenna and L. Chaumont, “An invariance principle for random walk bridges conditioned to stay positive”, Electron. J. Probab., 18 (2013), 60, 32 pp. | DOI | MR | Zbl

[4] R. A. Doney, “Conditional limit theorems for asymptotically stable random walks”, Z. Wahrsch. Verw. Gebiete, 70:3 (1985), 351–360 | DOI | MR | Zbl

[5] R. Durrett, “Conditioned limit theorems for some null recurrent Markov processes”, Ann. Probab., 6:5 (1978), 798–828 | DOI | MR | Zbl

[6] R. A. Doney, “Local behaviour of first passage probabilities”, Probab. Theory Related Fields, 152:3–4 (2012), 559–588 | DOI | MR | Zbl

[7] W. Feller, An introduction to probability theory and its applications, v. 2, John Wiley Sons, Inc., New York–London–Sydney, 1966, xviii+636 pp. | MR | Zbl

[8] K. Hirano, “Determination of the limiting coefficient for exponential functionals of random walks with positive drift”, J. Math. Sci. Univ. Tokyo, 5:2 (1998), 299–332 | MR | Zbl

[9] G. Kersting and V. Vatutin, Discrete time branching processes in random environment, Math. Stat. Ser., John Wiley Sons, London; ISTE, Hoboken, NJ, 2017, xiv+286 pp. | DOI | Zbl

[10] B. A. Rogozin, “The distribution of the first ladder moment and height and fluctuation of a random walk”, Theory Probab. Appl., 16:4 (1971), 575–595 | DOI | MR | Zbl

[11] Ya. G. Sinai, “On the distribution of the first positive sum for a sequence of independent random variables”, Theory Probab. Appl., 2:1 (1957), 122–129 | DOI | Zbl

[12] V. A. Vatutin and E. E. Dyakonova, “Critical branching processes evolving in a unfavorable random environment”, Discrete Math. Appl., 34:3 (2024), 175–186 | DOI

[13] V. A. Vatutin and E. E. Dyakonova, “Population size of a critical branching process evolving in an unfavorable environment”, Theory Probab. Appl., 68:3 (2023), 411–430 | DOI | MR | Zbl

[14] V. A. Vatutin, C. Dong and E. E. Dyakonova, “Random walks conditioned to stay nonnegative and branching processes in an unfavourable environment”, Sb. Math., 214:11 (2023), 1501–1533 | DOI | MR | Zbl

[15] V. A. Vatutin and V. Wachtel, “Local probabilities for random walks conditioned to stay positive”, Probab. Theory Related Fields, 143:1–2 (2009), 177–217 | DOI | MR | Zbl