@article{SM_2024_215_10_a1,
author = {V. A. Vatutin and C. Dong and E. E. Dyakonova},
title = {Some functionals for random walks and critical branching processes in an extremely unfavourable random environment},
journal = {Sbornik. Mathematics},
pages = {1321--1350},
year = {2024},
volume = {215},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_10_a1/}
}
TY - JOUR AU - V. A. Vatutin AU - C. Dong AU - E. E. Dyakonova TI - Some functionals for random walks and critical branching processes in an extremely unfavourable random environment JO - Sbornik. Mathematics PY - 2024 SP - 1321 EP - 1350 VL - 215 IS - 10 UR - http://geodesic.mathdoc.fr/item/SM_2024_215_10_a1/ LA - en ID - SM_2024_215_10_a1 ER -
%0 Journal Article %A V. A. Vatutin %A C. Dong %A E. E. Dyakonova %T Some functionals for random walks and critical branching processes in an extremely unfavourable random environment %J Sbornik. Mathematics %D 2024 %P 1321-1350 %V 215 %N 10 %U http://geodesic.mathdoc.fr/item/SM_2024_215_10_a1/ %G en %F SM_2024_215_10_a1
V. A. Vatutin; C. Dong; E. E. Dyakonova. Some functionals for random walks and critical branching processes in an extremely unfavourable random environment. Sbornik. Mathematics, Tome 215 (2024) no. 10, pp. 1321-1350. http://geodesic.mathdoc.fr/item/SM_2024_215_10_a1/
[1] V. I. Afanasyev, J. Geiger, G. Kersting and V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl
[2] V. I. Afanasyev, Ch. Böinghoff, G. Kersting and V. A. Vatutin, “Limit theorems for weakly subcritical branching processes in random environment”, J. Theoret. Probab., 25:3 (2012), 703–732 | DOI | MR | Zbl
[3] F. Caravenna and L. Chaumont, “An invariance principle for random walk bridges conditioned to stay positive”, Electron. J. Probab., 18 (2013), 60, 32 pp. | DOI | MR | Zbl
[4] R. A. Doney, “Conditional limit theorems for asymptotically stable random walks”, Z. Wahrsch. Verw. Gebiete, 70:3 (1985), 351–360 | DOI | MR | Zbl
[5] R. Durrett, “Conditioned limit theorems for some null recurrent Markov processes”, Ann. Probab., 6:5 (1978), 798–828 | DOI | MR | Zbl
[6] R. A. Doney, “Local behaviour of first passage probabilities”, Probab. Theory Related Fields, 152:3–4 (2012), 559–588 | DOI | MR | Zbl
[7] W. Feller, An introduction to probability theory and its applications, v. 2, John Wiley Sons, Inc., New York–London–Sydney, 1966, xviii+636 pp. | MR | Zbl
[8] K. Hirano, “Determination of the limiting coefficient for exponential functionals of random walks with positive drift”, J. Math. Sci. Univ. Tokyo, 5:2 (1998), 299–332 | MR | Zbl
[9] G. Kersting and V. Vatutin, Discrete time branching processes in random environment, Math. Stat. Ser., John Wiley Sons, London; ISTE, Hoboken, NJ, 2017, xiv+286 pp. | DOI | Zbl
[10] B. A. Rogozin, “The distribution of the first ladder moment and height and fluctuation of a random walk”, Theory Probab. Appl., 16:4 (1971), 575–595 | DOI | MR | Zbl
[11] Ya. G. Sinai, “On the distribution of the first positive sum for a sequence of independent random variables”, Theory Probab. Appl., 2:1 (1957), 122–129 | DOI | Zbl
[12] V. A. Vatutin and E. E. Dyakonova, “Critical branching processes evolving in a unfavorable random environment”, Discrete Math. Appl., 34:3 (2024), 175–186 | DOI
[13] V. A. Vatutin and E. E. Dyakonova, “Population size of a critical branching process evolving in an unfavorable environment”, Theory Probab. Appl., 68:3 (2023), 411–430 | DOI | MR | Zbl
[14] V. A. Vatutin, C. Dong and E. E. Dyakonova, “Random walks conditioned to stay nonnegative and branching processes in an unfavourable environment”, Sb. Math., 214:11 (2023), 1501–1533 | DOI | MR | Zbl
[15] V. A. Vatutin and V. Wachtel, “Local probabilities for random walks conditioned to stay positive”, Probab. Theory Related Fields, 143:1–2 (2009), 177–217 | DOI | MR | Zbl