Moduli of rank $2$ semistable sheaves on rational Fano threefolds of the main series
Sbornik. Mathematics, Tome 215 (2024) no. 10, pp. 1269-1320 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The moduli spaces of semistable coherent sheaves of rank $2$ on the projective space $\mathbb{P}^3$ and the following rational Fano manifolds of the main series are investigated: the three-dimensional quadric $X_2$, the intersection of two four-dimensional quadrics $X_4$ and the Fano manifold of degree five $X_5$. For the quadric $X_2$ the boundedness of the third Chern class $c_3$ of rank $2$ semistable objects in $\mathrm{D}^b(X_2)$, including sheaves, is proved. An explicit description is presented for all moduli spaces of semistable sheaves of rank $2$ on $X_2$, including reflexive ones, with the maximal third class $c_3\ge0$. These spaces turn out to be irreducible smooth rational manifolds in all cases, apart from the following two: $(c_1,c_2,c_3)=(0,2,2)$ or (0,4,8). The first example of a disconnected module space of semistable rank $2$ sheaves with fixed Chern classes on a smooth projective variety is found: this is the second exceptional case $(c_1,c_2,c_3)= (0,4,8)$ on the quadric $X_2$. Several new infinite series of rational components of the moduli spaces of semistable sheaves of rank $2$ on $\mathbb{P}^3$, $X_2$, $X_4$ and $X_5$ are constructed, as also is a new infinite series of irrational components on $X_4$. The boundedness of the class $c_3$ is proved for $c_1=0$ and any $c_2>0$ for stable reflexive sheaves of general type on the varieties $X_4$ and $X_5$. Bibliography: 30 titles.
Keywords: stable sheaves of rank $2$, moduli spaces of sheaves, Fano manifolds.
@article{SM_2024_215_10_a0,
     author = {D. A. Vasil'ev and A. S. Tikhomirov},
     title = {Moduli of rank~$2$ semistable sheaves on~rational {Fano} threefolds of the main series},
     journal = {Sbornik. Mathematics},
     pages = {1269--1320},
     year = {2024},
     volume = {215},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_10_a0/}
}
TY  - JOUR
AU  - D. A. Vasil'ev
AU  - A. S. Tikhomirov
TI  - Moduli of rank $2$ semistable sheaves on rational Fano threefolds of the main series
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1269
EP  - 1320
VL  - 215
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_10_a0/
LA  - en
ID  - SM_2024_215_10_a0
ER  - 
%0 Journal Article
%A D. A. Vasil'ev
%A A. S. Tikhomirov
%T Moduli of rank $2$ semistable sheaves on rational Fano threefolds of the main series
%J Sbornik. Mathematics
%D 2024
%P 1269-1320
%V 215
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2024_215_10_a0/
%G en
%F SM_2024_215_10_a0
D. A. Vasil'ev; A. S. Tikhomirov. Moduli of rank $2$ semistable sheaves on rational Fano threefolds of the main series. Sbornik. Mathematics, Tome 215 (2024) no. 10, pp. 1269-1320. http://geodesic.mathdoc.fr/item/SM_2024_215_10_a0/

[1] V. A. Iskovskih, “Fano 3-folds. I”, Math. USSR-Izv., 11:3 (1977), 485–527 | DOI | MR | Zbl

[2] C. Almeida, M. Jardim and A. S. Tikhomirov, “Irreducible components of the moduli space of rank 2 sheaves of odd determinant on projective space”, Adv. Math., 402 (2022), 108363, 64 pp. | DOI | MR | Zbl

[3] V. Antonelli, G. Casnati and O. Genc, “Even and odd instanton bundles on Fano threefolds”, Asian J. Math., 26:1 (2022), 81–118 | DOI | MR | Zbl

[4] E. Ballico and J. A. Wiśniewski, “On Bănică sheaves and Fano manifolds”, Compos. Math., 102:3 (1996), 313–335 | MR | Zbl

[5] C. Bănică, M. Putinar and G. Schumacher, “Variation der globalen Ext in Deformationen kompakter komplexer Räume”, Math. Ann., 250:2 (1980), 135–155 | DOI | MR | Zbl

[6] W. Barth and K. Hulek, “Monads and moduli of vector bundles”, Manuscripta Math., 25:4 (1978), 323–347 | DOI | MR | Zbl

[7] A. Bayer, E. Macri and Y. Toda, “Bridgeland stability conditions on threefolds I: Bogomolov–Gieseker type inequalities”, J. Algebraic Geom., 23:1 (2014), 117–163 | DOI | MR | Zbl

[8] T. Bridgeland, “Stability conditions on $K3$ surfaces”, Duke Math. J., 141:2 (2008), 241–291 | DOI | MR | Zbl

[9] G. Comaschi, M. Jardim, C. Martinez and Dapeng Mu, “Instanton sheaves: the next frontier”, São Paulo J. Math. Sci., 2023, 1–37, Publ. online | DOI

[10] L. Costa and R. M. Miró-Roig, “Monads and instanton bundles on smooth hyperquadrics”, Math. Nachr., 282:2 (2009), 169–179 | DOI | MR | Zbl

[11] L. Ein, “Generalized null correlation bundles”, Nagoya Math. J., 111 (1988), 13–24 | DOI | MR | Zbl

[12] G. Ellingsrud and S. A. Strømme, “Stable rank-2 vector bundles on $\mathbb{P}^3$ with $c_1=0$ and $c_2=3$”, Math. Ann., 255:1 (1981), 123–135 | DOI | MR | Zbl

[13] D. Faenzi, “Even and odd instanton bundles on Fano threefolds of Picard number one”, Manuscripta Math., 144:1–2 (2014), 199–239 | DOI | MR | Zbl

[14] R. Hartshorne, “Stable vector bundles of rank 2 on $\mathbf{P}^3$”, Math. Ann., 238:3 (1978), 229–280 | DOI | MR | Zbl

[15] R. Hartshorne, “Stable reflexive sheaves”, Math. Ann., 254:2 (1980), 121–176 | DOI | MR | Zbl

[16] V. A. Iskovskikh and Yu. G. Prokhorov, “Fano varieties”, Algebraic geometry V, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999, 1–247 | MR | Zbl

[17] M. Jardim, D. Markushevich and A. S. Tikhomirov, “Two infinite series of moduli spaces of rank 2 sheaves on $\mathbb P^3$”, Ann. Mat. Pura Appl. (4), 196:4 (2017), 1573–1608 | DOI | MR | Zbl

[18] A. Kuznetsov, “Instanton bundles on Fano threefolds”, Cent. Eur. J. Math., 10:4 (2012), 1198–1231 | DOI | MR | Zbl

[19] A. A. Kytmanov, A. S. Tikhomirov and S. A. Tikhomirov, “Series of rational moduli components of stable rank two vector bundles on $\mathbb P^3$”, Selecta Math. (N.S.), 25:2 (2019), 29, 47 pp. | DOI | MR | Zbl

[20] H. Lange, “Universal families of extensions”, J. Algebra, 83:1 (1983), 101–112 | DOI | MR | Zbl

[21] E. Macrì and B. Schmidt, “Derived categories and the genus of space curves”, Algebr. Geom., 7:2 (2020), 153–191 | DOI | MR | Zbl

[22] R. M. Miró-Roig and G. Trautmann, “The moduli scheme $M(0,2,4)$ over $\mathbb P^3$”, Math. Z., 216:2 (1994), 283–315 | DOI | MR | Zbl

[23] P. Rao, “A note on cohomology modules of rank two bundles”, J. Algebra, 86:1 (1984), 23–34 | DOI | MR | Zbl

[24] B. Schmidt, “A generalized Bogomolov–Gieseker inequality for the smooth quadric threefold”, Bull. Lond. Math. Soc., 46:5 (2014), 915–923 | DOI | MR | Zbl

[25] B. Schmidt, “Rank two sheaves with maximal third Chern character in three-dimensional projective space”, Mat. Contemp., 47 (2020), 228–270 | DOI | MR | Zbl

[26] B. Schmidt, “Bridgeland stability on threefolds: some wall crossings”, J. Algebraic Geom., 29:2 (2020), 247–283 | DOI | MR | Zbl

[27] B. Schmidt, “Sheaves of low rank in three-dimensional projective space”, Eur. J. Math., 9:4 (2023), 103, 71 pp. | DOI | MR | Zbl

[28] I. R. Shafarevich, Basic algebraic geometry, v. 1, Varieties in projective space, 3rd ed., Springer, Heidelberg, 2013, xviii+310 pp. | DOI | MR | Zbl

[29] V. K. Vedernikov, “Moduli of stable vector bundles of rank 2 on $P_3$ with fixed spectrum”, Math. USSR-Izv., 25:2 (1985), 301–313 | DOI | MR | Zbl

[30] V. K. Vedernikov, “The moduli of super-null-correlation bundles on $\mathbf P_3$”, Math. Ann., 276:3 (1987), 365–383 | DOI | MR | Zbl