@article{SM_2024_215_10_a0,
author = {D. A. Vasil'ev and A. S. Tikhomirov},
title = {Moduli of rank~$2$ semistable sheaves on~rational {Fano} threefolds of the main series},
journal = {Sbornik. Mathematics},
pages = {1269--1320},
year = {2024},
volume = {215},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_10_a0/}
}
TY - JOUR AU - D. A. Vasil'ev AU - A. S. Tikhomirov TI - Moduli of rank $2$ semistable sheaves on rational Fano threefolds of the main series JO - Sbornik. Mathematics PY - 2024 SP - 1269 EP - 1320 VL - 215 IS - 10 UR - http://geodesic.mathdoc.fr/item/SM_2024_215_10_a0/ LA - en ID - SM_2024_215_10_a0 ER -
D. A. Vasil'ev; A. S. Tikhomirov. Moduli of rank $2$ semistable sheaves on rational Fano threefolds of the main series. Sbornik. Mathematics, Tome 215 (2024) no. 10, pp. 1269-1320. http://geodesic.mathdoc.fr/item/SM_2024_215_10_a0/
[1] V. A. Iskovskih, “Fano 3-folds. I”, Math. USSR-Izv., 11:3 (1977), 485–527 | DOI | MR | Zbl
[2] C. Almeida, M. Jardim and A. S. Tikhomirov, “Irreducible components of the moduli space of rank 2 sheaves of odd determinant on projective space”, Adv. Math., 402 (2022), 108363, 64 pp. | DOI | MR | Zbl
[3] V. Antonelli, G. Casnati and O. Genc, “Even and odd instanton bundles on Fano threefolds”, Asian J. Math., 26:1 (2022), 81–118 | DOI | MR | Zbl
[4] E. Ballico and J. A. Wiśniewski, “On Bănică sheaves and Fano manifolds”, Compos. Math., 102:3 (1996), 313–335 | MR | Zbl
[5] C. Bănică, M. Putinar and G. Schumacher, “Variation der globalen Ext in Deformationen kompakter komplexer Räume”, Math. Ann., 250:2 (1980), 135–155 | DOI | MR | Zbl
[6] W. Barth and K. Hulek, “Monads and moduli of vector bundles”, Manuscripta Math., 25:4 (1978), 323–347 | DOI | MR | Zbl
[7] A. Bayer, E. Macri and Y. Toda, “Bridgeland stability conditions on threefolds I: Bogomolov–Gieseker type inequalities”, J. Algebraic Geom., 23:1 (2014), 117–163 | DOI | MR | Zbl
[8] T. Bridgeland, “Stability conditions on $K3$ surfaces”, Duke Math. J., 141:2 (2008), 241–291 | DOI | MR | Zbl
[9] G. Comaschi, M. Jardim, C. Martinez and Dapeng Mu, “Instanton sheaves: the next frontier”, São Paulo J. Math. Sci., 2023, 1–37, Publ. online | DOI
[10] L. Costa and R. M. Miró-Roig, “Monads and instanton bundles on smooth hyperquadrics”, Math. Nachr., 282:2 (2009), 169–179 | DOI | MR | Zbl
[11] L. Ein, “Generalized null correlation bundles”, Nagoya Math. J., 111 (1988), 13–24 | DOI | MR | Zbl
[12] G. Ellingsrud and S. A. Strømme, “Stable rank-2 vector bundles on $\mathbb{P}^3$ with $c_1=0$ and $c_2=3$”, Math. Ann., 255:1 (1981), 123–135 | DOI | MR | Zbl
[13] D. Faenzi, “Even and odd instanton bundles on Fano threefolds of Picard number one”, Manuscripta Math., 144:1–2 (2014), 199–239 | DOI | MR | Zbl
[14] R. Hartshorne, “Stable vector bundles of rank 2 on $\mathbf{P}^3$”, Math. Ann., 238:3 (1978), 229–280 | DOI | MR | Zbl
[15] R. Hartshorne, “Stable reflexive sheaves”, Math. Ann., 254:2 (1980), 121–176 | DOI | MR | Zbl
[16] V. A. Iskovskikh and Yu. G. Prokhorov, “Fano varieties”, Algebraic geometry V, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999, 1–247 | MR | Zbl
[17] M. Jardim, D. Markushevich and A. S. Tikhomirov, “Two infinite series of moduli spaces of rank 2 sheaves on $\mathbb P^3$”, Ann. Mat. Pura Appl. (4), 196:4 (2017), 1573–1608 | DOI | MR | Zbl
[18] A. Kuznetsov, “Instanton bundles on Fano threefolds”, Cent. Eur. J. Math., 10:4 (2012), 1198–1231 | DOI | MR | Zbl
[19] A. A. Kytmanov, A. S. Tikhomirov and S. A. Tikhomirov, “Series of rational moduli components of stable rank two vector bundles on $\mathbb P^3$”, Selecta Math. (N.S.), 25:2 (2019), 29, 47 pp. | DOI | MR | Zbl
[20] H. Lange, “Universal families of extensions”, J. Algebra, 83:1 (1983), 101–112 | DOI | MR | Zbl
[21] E. Macrì and B. Schmidt, “Derived categories and the genus of space curves”, Algebr. Geom., 7:2 (2020), 153–191 | DOI | MR | Zbl
[22] R. M. Miró-Roig and G. Trautmann, “The moduli scheme $M(0,2,4)$ over $\mathbb P^3$”, Math. Z., 216:2 (1994), 283–315 | DOI | MR | Zbl
[23] P. Rao, “A note on cohomology modules of rank two bundles”, J. Algebra, 86:1 (1984), 23–34 | DOI | MR | Zbl
[24] B. Schmidt, “A generalized Bogomolov–Gieseker inequality for the smooth quadric threefold”, Bull. Lond. Math. Soc., 46:5 (2014), 915–923 | DOI | MR | Zbl
[25] B. Schmidt, “Rank two sheaves with maximal third Chern character in three-dimensional projective space”, Mat. Contemp., 47 (2020), 228–270 | DOI | MR | Zbl
[26] B. Schmidt, “Bridgeland stability on threefolds: some wall crossings”, J. Algebraic Geom., 29:2 (2020), 247–283 | DOI | MR | Zbl
[27] B. Schmidt, “Sheaves of low rank in three-dimensional projective space”, Eur. J. Math., 9:4 (2023), 103, 71 pp. | DOI | MR | Zbl
[28] I. R. Shafarevich, Basic algebraic geometry, v. 1, Varieties in projective space, 3rd ed., Springer, Heidelberg, 2013, xviii+310 pp. | DOI | MR | Zbl
[29] V. K. Vedernikov, “Moduli of stable vector bundles of rank 2 on $P_3$ with fixed spectrum”, Math. USSR-Izv., 25:2 (1985), 301–313 | DOI | MR | Zbl
[30] V. K. Vedernikov, “The moduli of super-null-correlation bundles on $\mathbf P_3$”, Math. Ann., 276:3 (1987), 365–383 | DOI | MR | Zbl