On the Zaremba problem for the $p$-elliptic equation
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 9, pp. 1321-1336
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Higher integrability for the gradient of the solution to the Zaremba problem in a bounded strictly Lipschitz domain for the inhomogeneous $p$-elliptic equation is proved.
Bibliography 33 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Zaremba problem, Meyers estimates, $p$-capacity, embedding theorem, higher integrability.
                    
                    
                    
                  
                
                
                @article{SM_2023_214_9_a3,
     author = {A. G. Chechkina},
     title = {On the {Zaremba} problem for the $p$-elliptic equation},
     journal = {Sbornik. Mathematics},
     pages = {1321--1336},
     publisher = {mathdoc},
     volume = {214},
     number = {9},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_9_a3/}
}
                      
                      
                    A. G. Chechkina. On the Zaremba problem for the $p$-elliptic equation. Sbornik. Mathematics, Tome 214 (2023) no. 9, pp. 1321-1336. http://geodesic.mathdoc.fr/item/SM_2023_214_9_a3/
