On the Zaremba problem for the $p$-elliptic equation
Sbornik. Mathematics, Tome 214 (2023) no. 9, pp. 1321-1336

Voir la notice de l'article provenant de la source Math-Net.Ru

Higher integrability for the gradient of the solution to the Zaremba problem in a bounded strictly Lipschitz domain for the inhomogeneous $p$-elliptic equation is proved. Bibliography 33 titles.
Keywords: Zaremba problem, Meyers estimates, $p$-capacity, embedding theorem, higher integrability.
@article{SM_2023_214_9_a3,
     author = {A. G. Chechkina},
     title = {On the {Zaremba} problem for the $p$-elliptic equation},
     journal = {Sbornik. Mathematics},
     pages = {1321--1336},
     publisher = {mathdoc},
     volume = {214},
     number = {9},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_9_a3/}
}
TY  - JOUR
AU  - A. G. Chechkina
TI  - On the Zaremba problem for the $p$-elliptic equation
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1321
EP  - 1336
VL  - 214
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_9_a3/
LA  - en
ID  - SM_2023_214_9_a3
ER  - 
%0 Journal Article
%A A. G. Chechkina
%T On the Zaremba problem for the $p$-elliptic equation
%J Sbornik. Mathematics
%D 2023
%P 1321-1336
%V 214
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_9_a3/
%G en
%F SM_2023_214_9_a3
A. G. Chechkina. On the Zaremba problem for the $p$-elliptic equation. Sbornik. Mathematics, Tome 214 (2023) no. 9, pp. 1321-1336. http://geodesic.mathdoc.fr/item/SM_2023_214_9_a3/