Traces of Sobolev spaces to irregular subsets of metric measure spaces
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 9, pp. 1241-1320
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Given $p \in (1,\infty)$, let $(\operatorname{X},\operatorname{d},\mu)$ be a metric measure space with uniformly locally doubling measure $\mu$ supporting a weak local $(1,p)$-Poincaré inequality. For each $\theta \in [0,p)$ we characterize the trace space of the Sobolev $W^{1}_{p}(\operatorname{X})$-space to lower $\theta$-codimensional content regular closed sets $S \subset \operatorname{X}$. In particular, if the space $(\operatorname{X},\operatorname{d},\mu)$ is Ahlfors $Q$-regular for some $Q \geq 1$ and $p \in (Q,\infty)$, then we obtain an intrinsic description of the trace-space of the Sobolev space $W^{1}_{p}(\operatorname{X})$ to arbitrary closed nonempty sets $S \subset \operatorname{X}$. 
Bibliography: 43 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
extensions.
Mots-clés : Sobolev spaces, traces
                    
                  
                
                
                Mots-clés : Sobolev spaces, traces
@article{SM_2023_214_9_a2,
     author = {A. I. Tyulenev},
     title = {Traces of {Sobolev} spaces to irregular subsets of metric measure spaces},
     journal = {Sbornik. Mathematics},
     pages = {1241--1320},
     publisher = {mathdoc},
     volume = {214},
     number = {9},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_9_a2/}
}
                      
                      
                    A. I. Tyulenev. Traces of Sobolev spaces to irregular subsets of metric measure spaces. Sbornik. Mathematics, Tome 214 (2023) no. 9, pp. 1241-1320. http://geodesic.mathdoc.fr/item/SM_2023_214_9_a2/
