@article{SM_2023_214_9_a1,
author = {A. M. Musaeva},
title = {Construction of invariant {Lyapunov} norms for planar switching systems},
journal = {Sbornik. Mathematics},
pages = {1212--1240},
year = {2023},
volume = {214},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_9_a1/}
}
A. M. Musaeva. Construction of invariant Lyapunov norms for planar switching systems. Sbornik. Mathematics, Tome 214 (2023) no. 9, pp. 1212-1240. http://geodesic.mathdoc.fr/item/SM_2023_214_9_a1/
[1] D. Liberzon, Switching in systems and control, Systems Control Found. Appl., Birkhäuser Boston, Inc., Boston, MA, 2003, xiv+233 pp. | DOI | MR | Zbl
[2] D. Liberzon and A. S. Morse, “Basic problems in stability and design of switched systems”, IEEE Control Syst. Mag., 19:5 (1999), 59–70 | DOI | Zbl
[3] F. Blanchini and S. Miani, “A new class of universal Lyapunov functions for the control of uncertain linear systems”, IEEE Trans. Automat. Control, 44:3 (1999), 641–647 | DOI | MR | Zbl
[4] U. Boscain, “A review on stability of switched systems for arbitrary switchings”, Geometric control and nonsmooth analysis, Ser. Adv. Math. Appl. Sci., 76, World Sci. Publ., Hackensack, NJ, 2008, 100–119 | DOI | MR | Zbl
[5] A. P. Molchanov and Ye. S. Pyatnitskiy, “Criteria of asymptotic stability of differential and difference inclusions encountered in control theory”, Systems Control Lett., 13:1 (1989), 59–64 | DOI | MR | Zbl
[6] F. Blanchini and S. Miani, “Piecewise-linear functions in robust control”, Robust control via variable structure and Lyapunov techniques (Benevento 1994), Lect. Notes Control Inf. Sci., 217, Springer-Verlag London, Ltd., London, 1996, 213–243 | DOI | MR | Zbl
[7] N. Guglielmi, L. Laglia and V. Protasov, “Polytope Lyapunov functions for stable and for stabilizable LSS”, Found. Comput. Math., 17:2 (2017), 567–623 | DOI | MR | Zbl
[8] N. E. Barabanov, “Absolute characteristic exponent of a class of linear nonstationary systems of differential equations”, Siberian Math. J., 29:4 (1988), 521–530 | DOI | MR | Zbl
[9] R. N. Shorten and K. S. Narendra, “Necessary and sufficient conditions for the existence of a common quadratic Lyapunov function for two stable second order linear time-invariant systems”, Proceedings of the 1999 American control conference (San Diego, CA), v. 2, IEEE, 1999, 1410–1414 | DOI
[10] Y. Chitour, M. Gaye and P. Mason, “Geometric and asymptotic properties associated with linear switched systems”, J. Differential Equations, 259:11 (2015), 5582–5616 | DOI | MR | Zbl
[11] I. D. Moris, An irreducible linear switching system whose unique Barabanov norm is not strictly convex, arXiv: 2301.09942v1
[12] D. V. Shatov, “Stability of a certain class of second order switched systems”, 20th IFAC conference on technology, culture, and international stability TECIS 2021 (Moscow 2021), IFAC-PapersOnLine, 54:13 (2021), 425–430 | DOI
[13] D. V. Shatov, “Analysis of stability and dwell time of a certain class of switched systems with second order subsystems”, 16th international conference on stability and oscillations of nonlinear control systems (Pyatnitskiy's conference) (Moscow 2022), IEEE, 2022, 1–4 | DOI
[14] M. Margaliot, “Stability analysis of switched systems using variational principles: an introduction”, Automatica J. IFAC, 42:12 (2006), 2059–2077 | DOI | MR | Zbl
[15] M. Balde, U. Boscain and P. Mason, “A note on stability conditions for planar switched systems”, Internat. J. Control, 82:10 (2009), 1882–1888 | DOI | MR | Zbl
[16] M. Balde and U. Boscain, “Stability of planar switched systems: the nondiagonalizable case”, Commun. Pure Appl. Anal., 7:1 (2008), 1–21 | DOI | MR | Zbl
[17] M. Benaïm, S. Le Borgne, F. Malrieu and P. Zitt, “On the stability of planar randomly switched systems”, Ann. Appl. Probab., 24:1 (2014), 292–311 | DOI | MR | Zbl
[18] L. Greco, F. Tocchini and M. Innocenti, “A geometry-based algorithm for the stability of planar switching systems”, Internat. J. Systems Sci., 37:11 (2006), 747–761 | DOI | MR | Zbl
[19] Shen Cong, “Stability analysis for planar discrete-time linear switching systems via bounding joint spectral radius”, Systems Control Lett., 96 (2016), 7–10 | DOI | MR | Zbl
[20] V. Yu. Protasov, “Joint spectral radius and invariant sets of linear operators”, Fundam. Prikl. Mat., 2:1 (1996), 205–231 (Russian) | MR | Zbl
[21] V. Yu. Protasov, “On the regularity of de Rham curves”, Izv. Math., 68:3 (2004), 567–606 | DOI | MR | Zbl
[22] V. D. Blondel, J. Theys and A. A. Vladimirov, “An elementary counterexample to the finiteness conjecture”, SIAM J. Matrix Anal. Appl., 24:4 (2003), 963–979 | DOI | MR | Zbl
[23] V. S. Kozyakin, “On the computational aspects of the theory of joint spectral radius”, Dokl. Math., 80:1 (2009), 487–491 | DOI | MR | Zbl
[24] K. G. Hare, I. D. Morris, N. Sidorov and J. Theys, “An explicit counterexample to the Lagarias-Wang finiteness conjecture”, Adv. Math., 226:6 (2011), 4667–4701 | DOI | MR | Zbl
[25] I. D. Morris and N. Sidorov, “On a devil's staircase associated to the joint spectral radii of a family of pairs of matrices”, J. Eur. Math. Soc. (JEMS), 15:5 (2013), 1747–1782 | DOI | MR | Zbl
[26] A. Cicone, N. Guglielmi, S. Serra-Capizzano and M. Zennaro, “Finiteness property of pairs of $2 \times 2$ sign-matrices via real extremal polytope norms”, Linear Algebra Appl., 432:2–3 (2010), 796–816 | DOI | MR | Zbl
[27] I. Ya. Novikov, V. Yu. Protasov and M. A. Skopina, Wavelet theory, Transl. Math. Monogr., 239, Amer. Math. Soc., Providence, RI, 2011, xiv+506 pp. | DOI | MR | MR | Zbl | Zbl
[28] V. Yu. Protasov, “Fractal curves and wavelets”, Izv. Math., 70:5 (2006), 975–1013 | DOI | MR | Zbl
[29] J. N. Tsitsiklis and V. D. Blondel, “The Lyapunov exponent and joint spectral radius of pairs of matrices are hard — when not impossible — to compute and to approximate”, Math. Control Signals Systems, 10:1 (1997), 31–40 | DOI | MR | Zbl
[30] V. Yu. Protasov, “The Barabanov norm is generically unique, simple, and easily computed”, SIAM J. Control Optim., 60:4 (2022), 2246–2267 | DOI | MR | Zbl