Construction of invariant Lyapunov norms for planar switching systems
Sbornik. Mathematics, Tome 214 (2023) no. 9, pp. 1212-1240 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of the stability of linear dynamical switching systems. It is known that an irreducible $d$-dimensional system always has an invariant Lyapunov norm (a Barabanov norm), which determines the stability of the system and the rate of growth of its trajectories. We prove that in the case of $d=2$ the invariant norm is a piecewise analytic function and can be constructed explicitly for every finite system of matrices. The method of construction, an algorithm for computing the Lyapunov exponent and a way for deciding the stability of the system are presented. A complete classification of invariant norms for planar systems is derived. A criterion of the uniqueness of an invariant norm of a given system is proved, and some special norms (norms generated by polygons and so on) are investigated. Bibliography: 30 titles.
Keywords: linear switching system, dynamical system, stability, Lyapunov function, Lyapunov exponent.
@article{SM_2023_214_9_a1,
     author = {A. M. Musaeva},
     title = {Construction of invariant {Lyapunov} norms for planar switching systems},
     journal = {Sbornik. Mathematics},
     pages = {1212--1240},
     year = {2023},
     volume = {214},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_9_a1/}
}
TY  - JOUR
AU  - A. M. Musaeva
TI  - Construction of invariant Lyapunov norms for planar switching systems
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1212
EP  - 1240
VL  - 214
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_9_a1/
LA  - en
ID  - SM_2023_214_9_a1
ER  - 
%0 Journal Article
%A A. M. Musaeva
%T Construction of invariant Lyapunov norms for planar switching systems
%J Sbornik. Mathematics
%D 2023
%P 1212-1240
%V 214
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2023_214_9_a1/
%G en
%F SM_2023_214_9_a1
A. M. Musaeva. Construction of invariant Lyapunov norms for planar switching systems. Sbornik. Mathematics, Tome 214 (2023) no. 9, pp. 1212-1240. http://geodesic.mathdoc.fr/item/SM_2023_214_9_a1/

[1] D. Liberzon, Switching in systems and control, Systems Control Found. Appl., Birkhäuser Boston, Inc., Boston, MA, 2003, xiv+233 pp. | DOI | MR | Zbl

[2] D. Liberzon and A. S. Morse, “Basic problems in stability and design of switched systems”, IEEE Control Syst. Mag., 19:5 (1999), 59–70 | DOI | Zbl

[3] F. Blanchini and S. Miani, “A new class of universal Lyapunov functions for the control of uncertain linear systems”, IEEE Trans. Automat. Control, 44:3 (1999), 641–647 | DOI | MR | Zbl

[4] U. Boscain, “A review on stability of switched systems for arbitrary switchings”, Geometric control and nonsmooth analysis, Ser. Adv. Math. Appl. Sci., 76, World Sci. Publ., Hackensack, NJ, 2008, 100–119 | DOI | MR | Zbl

[5] A. P. Molchanov and Ye. S. Pyatnitskiy, “Criteria of asymptotic stability of differential and difference inclusions encountered in control theory”, Systems Control Lett., 13:1 (1989), 59–64 | DOI | MR | Zbl

[6] F. Blanchini and S. Miani, “Piecewise-linear functions in robust control”, Robust control via variable structure and Lyapunov techniques (Benevento 1994), Lect. Notes Control Inf. Sci., 217, Springer-Verlag London, Ltd., London, 1996, 213–243 | DOI | MR | Zbl

[7] N. Guglielmi, L. Laglia and V. Protasov, “Polytope Lyapunov functions for stable and for stabilizable LSS”, Found. Comput. Math., 17:2 (2017), 567–623 | DOI | MR | Zbl

[8] N. E. Barabanov, “Absolute characteristic exponent of a class of linear nonstationary systems of differential equations”, Siberian Math. J., 29:4 (1988), 521–530 | DOI | MR | Zbl

[9] R. N. Shorten and K. S. Narendra, “Necessary and sufficient conditions for the existence of a common quadratic Lyapunov function for two stable second order linear time-invariant systems”, Proceedings of the 1999 American control conference (San Diego, CA), v. 2, IEEE, 1999, 1410–1414 | DOI

[10] Y. Chitour, M. Gaye and P. Mason, “Geometric and asymptotic properties associated with linear switched systems”, J. Differential Equations, 259:11 (2015), 5582–5616 | DOI | MR | Zbl

[11] I. D. Moris, An irreducible linear switching system whose unique Barabanov norm is not strictly convex, arXiv: 2301.09942v1

[12] D. V. Shatov, “Stability of a certain class of second order switched systems”, 20th IFAC conference on technology, culture, and international stability TECIS 2021 (Moscow 2021), IFAC-PapersOnLine, 54:13 (2021), 425–430 | DOI

[13] D. V. Shatov, “Analysis of stability and dwell time of a certain class of switched systems with second order subsystems”, 16th international conference on stability and oscillations of nonlinear control systems (Pyatnitskiy's conference) (Moscow 2022), IEEE, 2022, 1–4 | DOI

[14] M. Margaliot, “Stability analysis of switched systems using variational principles: an introduction”, Automatica J. IFAC, 42:12 (2006), 2059–2077 | DOI | MR | Zbl

[15] M. Balde, U. Boscain and P. Mason, “A note on stability conditions for planar switched systems”, Internat. J. Control, 82:10 (2009), 1882–1888 | DOI | MR | Zbl

[16] M. Balde and U. Boscain, “Stability of planar switched systems: the nondiagonalizable case”, Commun. Pure Appl. Anal., 7:1 (2008), 1–21 | DOI | MR | Zbl

[17] M. Benaïm, S. Le Borgne, F. Malrieu and P. Zitt, “On the stability of planar randomly switched systems”, Ann. Appl. Probab., 24:1 (2014), 292–311 | DOI | MR | Zbl

[18] L. Greco, F. Tocchini and M. Innocenti, “A geometry-based algorithm for the stability of planar switching systems”, Internat. J. Systems Sci., 37:11 (2006), 747–761 | DOI | MR | Zbl

[19] Shen Cong, “Stability analysis for planar discrete-time linear switching systems via bounding joint spectral radius”, Systems Control Lett., 96 (2016), 7–10 | DOI | MR | Zbl

[20] V. Yu. Protasov, “Joint spectral radius and invariant sets of linear operators”, Fundam. Prikl. Mat., 2:1 (1996), 205–231 (Russian) | MR | Zbl

[21] V. Yu. Protasov, “On the regularity of de Rham curves”, Izv. Math., 68:3 (2004), 567–606 | DOI | MR | Zbl

[22] V. D. Blondel, J. Theys and A. A. Vladimirov, “An elementary counterexample to the finiteness conjecture”, SIAM J. Matrix Anal. Appl., 24:4 (2003), 963–979 | DOI | MR | Zbl

[23] V. S. Kozyakin, “On the computational aspects of the theory of joint spectral radius”, Dokl. Math., 80:1 (2009), 487–491 | DOI | MR | Zbl

[24] K. G. Hare, I. D. Morris, N. Sidorov and J. Theys, “An explicit counterexample to the Lagarias-Wang finiteness conjecture”, Adv. Math., 226:6 (2011), 4667–4701 | DOI | MR | Zbl

[25] I. D. Morris and N. Sidorov, “On a devil's staircase associated to the joint spectral radii of a family of pairs of matrices”, J. Eur. Math. Soc. (JEMS), 15:5 (2013), 1747–1782 | DOI | MR | Zbl

[26] A. Cicone, N. Guglielmi, S. Serra-Capizzano and M. Zennaro, “Finiteness property of pairs of $2 \times 2$ sign-matrices via real extremal polytope norms”, Linear Algebra Appl., 432:2–3 (2010), 796–816 | DOI | MR | Zbl

[27] I. Ya. Novikov, V. Yu. Protasov and M. A. Skopina, Wavelet theory, Transl. Math. Monogr., 239, Amer. Math. Soc., Providence, RI, 2011, xiv+506 pp. | DOI | MR | MR | Zbl | Zbl

[28] V. Yu. Protasov, “Fractal curves and wavelets”, Izv. Math., 70:5 (2006), 975–1013 | DOI | MR | Zbl

[29] J. N. Tsitsiklis and V. D. Blondel, “The Lyapunov exponent and joint spectral radius of pairs of matrices are hard — when not impossible — to compute and to approximate”, Math. Control Signals Systems, 10:1 (1997), 31–40 | DOI | MR | Zbl

[30] V. Yu. Protasov, “The Barabanov norm is generically unique, simple, and easily computed”, SIAM J. Control Optim., 60:4 (2022), 2246–2267 | DOI | MR | Zbl