Billiard with slipping by an arbitrary rational angle
Sbornik. Mathematics, Tome 214 (2023) no. 9, pp. 1191-1211

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of billiards in a disc with slipping along the boundary circle by an angle commensurable with $\pi$ is considered. For such billiards it is shown that an isoenergy surface of the system is homeomorphic to a lens space $L(q,p)$ with parameters satisfying $0 p $. The set of pairs $(q, p)$ such that there exists a billiard in a disc realizing the corresponding lens space $L(q,p)$ is described in terms of solutions of a linear Diophantine equation in two variables. This result also holds for planar billiards with slipping in simply connected domains with smooth boundary, that is, it is not confined to the integrable case. Bibliography: 30 titles.
Keywords: integrable system, slipping
Mots-clés : billiard, Fomenko-Zieschang invariant, lens space.
@article{SM_2023_214_9_a0,
     author = {V. N. Zav'yalov},
     title = {Billiard with slipping by an arbitrary rational angle},
     journal = {Sbornik. Mathematics},
     pages = {1191--1211},
     publisher = {mathdoc},
     volume = {214},
     number = {9},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_9_a0/}
}
TY  - JOUR
AU  - V. N. Zav'yalov
TI  - Billiard with slipping by an arbitrary rational angle
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1191
EP  - 1211
VL  - 214
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_9_a0/
LA  - en
ID  - SM_2023_214_9_a0
ER  - 
%0 Journal Article
%A V. N. Zav'yalov
%T Billiard with slipping by an arbitrary rational angle
%J Sbornik. Mathematics
%D 2023
%P 1191-1211
%V 214
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_9_a0/
%G en
%F SM_2023_214_9_a0
V. N. Zav'yalov. Billiard with slipping by an arbitrary rational angle. Sbornik. Mathematics, Tome 214 (2023) no. 9, pp. 1191-1211. http://geodesic.mathdoc.fr/item/SM_2023_214_9_a0/