On the weighted Bojanov-Chebyshev problem and the sum of translates method of Fenton
Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1163-1190
Voir la notice de l'article provenant de la source Math-Net.Ru
Minimax and maximin problems are investigated for a special class of functions on the interval $[0,1]$. These functions are sums of translates of positive multiples of one kernel function and a very general external field function. Due to our very general setting the minimax, equioscillation and characterization results obtained extend those of Bojanov, Fenton, Hardin, Kendall, Saff, Ambrus, Ball and Erdélyi. Moreover, we discover a surprising intertwining phenomenon of interval maxima, which provides new information even in the most classical extremal problem of Chebyshev.
Bibliography: 25 titles.
Keywords:
minimax problem, Chebyshev polynomial, weighted Bojanov problem, kernel function, sum of translates function.
@article{SM_2023_214_8_a7,
author = {B. Farkas and B. Nagy and Sz. Gy. R\'ev\'esz},
title = {On the weighted {Bojanov-Chebyshev} problem and the sum of translates method of {Fenton}},
journal = {Sbornik. Mathematics},
pages = {1163--1190},
publisher = {mathdoc},
volume = {214},
number = {8},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_8_a7/}
}
TY - JOUR AU - B. Farkas AU - B. Nagy AU - Sz. Gy. Révész TI - On the weighted Bojanov-Chebyshev problem and the sum of translates method of Fenton JO - Sbornik. Mathematics PY - 2023 SP - 1163 EP - 1190 VL - 214 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2023_214_8_a7/ LA - en ID - SM_2023_214_8_a7 ER -
B. Farkas; B. Nagy; Sz. Gy. Révész. On the weighted Bojanov-Chebyshev problem and the sum of translates method of Fenton. Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1163-1190. http://geodesic.mathdoc.fr/item/SM_2023_214_8_a7/