@article{SM_2023_214_8_a7,
author = {B. Farkas and B. Nagy and Sz. Gy. R\'ev\'esz},
title = {On the weighted {Bojanov-Chebyshev} problem and the sum of translates method of {Fenton}},
journal = {Sbornik. Mathematics},
pages = {1163--1190},
year = {2023},
volume = {214},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_8_a7/}
}
TY - JOUR AU - B. Farkas AU - B. Nagy AU - Sz. Gy. Révész TI - On the weighted Bojanov-Chebyshev problem and the sum of translates method of Fenton JO - Sbornik. Mathematics PY - 2023 SP - 1163 EP - 1190 VL - 214 IS - 8 UR - http://geodesic.mathdoc.fr/item/SM_2023_214_8_a7/ LA - en ID - SM_2023_214_8_a7 ER -
B. Farkas; B. Nagy; Sz. Gy. Révész. On the weighted Bojanov-Chebyshev problem and the sum of translates method of Fenton. Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1163-1190. http://geodesic.mathdoc.fr/item/SM_2023_214_8_a7/
[1] G. Ambrus, K. M. Ball and T. Erdélyi, “Chebyshev constants for the unit circle”, Bull. Lond. Math. Soc., 45:2 (2013), 236–248 | DOI | MR | Zbl
[2] A. Berman and R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Classics Appl. Math., 9, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994, xx+340 pp. | DOI | MR | Zbl
[3] B. Bojanov and N. Naidenov, “Exact Markov-type inequalities for oscillating perfect splines”, Constr. Approx., 18:1 (2002), 37–59 | DOI | MR | Zbl
[4] B. Bojanov and N. Naidenov, “Alternation property and Markov's inequality for Tchebycheff systems”, East J. Approx., 10:4 (2004), 481–503 | MR | Zbl
[5] B. D. Bojanov and Q. I. Rahman, “On certain extremal problems for polynomials”, J. Math. Anal. Appl., 189:3 (1995), 781–800 | DOI | MR | Zbl
[6] B. D. Bojanov, “A generalization of Chebyshev polynomials”, J. Approx. Theory, 26:4 (1979), 293–300 | DOI | MR | Zbl
[7] P. Borwein and T. Erdélyi, Polynomials and polynomial inequalities, Grad. Texts in Math., 161, Springer-Verlag, New York, 1995, x+480 pp. | DOI | MR | Zbl
[8] O. V. Davydov, “A theorem about snakes for weak Cartesian systems”, Ukrainian Math. J., 47:3 (1995), 369–375 | DOI | MR | Zbl
[9] O. V. Davydov, “A class of weak Chebyshev spaces and characterization of best approximations”, J. Approx. Theory, 81:2 (1995), 250–259 | DOI | MR | Zbl
[10] B. Farkas, B. Nagy and S. G. Révész, “A homeomorphism theorem for sums of translates”, Rev. Mat. Complut., 2023, 1–49, Publ. online ; arXiv: 2112.11029 | DOI
[11] B. Farkas, B. Nagy and Sz. Gy. Révész, “A minimax problem for sums of translates on the torus”, Trans. London Math. Soc., 5:1 (2018), 1–46 | DOI | MR | Zbl
[12] P. C. Fenton, “The minimum of small entire functions”, Proc. Amer. Math. Soc., 81:4 (1981), 557–561 | DOI | MR | Zbl
[13] P. C. Fenton, “A min-max theorem for sums of translates of a function”, J. Math. Anal. Appl., 244:1 (2000), 214–222 | DOI | MR | Zbl
[14] P. C. Fenton, “$\cos\pi\lambda$ again”, Proc. Amer. Math. Soc., 131:6 (2003), 1875–1880 | DOI | MR | Zbl
[15] P. C. Fenton, “A refined $\cos\pi\rho$ theorem”, J. Math. Anal. Appl., 311:2 (2005), 675–682 | DOI | MR | Zbl
[16] A. A. Gol'dberg, “Minimum modulus of a meromorphic function of slow growth”, Math. Notes, 25:6 (1979), 432–437 | DOI | MR | Zbl
[17] A. Haar, “Die Minkowskische Geometrie und die Annäherung an stetige Funktionen”, Math. Ann., 78:1 (1917), 294–311 | DOI | MR | Zbl
[18] D. P. Hardin, A. P. Kendall and E. B. Saff, “Polarization optimality of equally spaced points on the circle for discrete potentials”, Discrete Comput. Geom., 50:1 (2013), 236–243 | DOI | MR | Zbl
[19] S. Karlin, “Representation theorems for positive functions”, J. Math. Mech., 12 (1963), 599–617 | MR | Zbl
[20] S. Karlin and W. J. Studden, Tchebycheff systems: with applications in analysis and statistics, Pure Appl. Math., 15, Interscience Publishers John Wiley Sons, New York–London–Sydney, 1966, xviii+586 pp. | MR | Zbl
[21] G. Nikolov and A. Shadrin, “On Markov-Duffin-Schaeffer inequalities with a majorant”, Constructive theory of functions (Sozopol 2010), Prof. M. Drinov Acad. Publ. House, Sofia, 2012, 227–264 | MR | Zbl
[22] G. Nikolov and A. Shadrin, “On Markov-Duffin-Schaeffer inequalities with a majorant. II”, Constructive theory of functions (Sozopol 2013), Prof. M. Drinov Acad. Publ. House, Sofia, 2014, 175–197 | MR | Zbl
[23] G. P. Nikolov, “Snake polynomials and Markov-type inequalities”, Approximation theory, DARBA, Sofia, 2002, 342–352 | MR | Zbl
[24] T. Parthasarathy, On global univalence theorems, Lecture Notes in Math., 977, Springer-Verlag, Berlin–New York, 1983, viii+106 pp. | DOI | MR | Zbl
[25] R. A. Rankin, “On the closest packing of spheres in $n$ dimensions”, Ann. of Math. (2), 48:4 (1947), 1062–1081 | DOI | MR | Zbl