On the weighted Bojanov-Chebyshev problem and the sum of translates method of Fenton
Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1163-1190 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Minimax and maximin problems are investigated for a special class of functions on the interval $[0,1]$. These functions are sums of translates of positive multiples of one kernel function and a very general external field function. Due to our very general setting the minimax, equioscillation and characterization results obtained extend those of Bojanov, Fenton, Hardin, Kendall, Saff, Ambrus, Ball and Erdélyi. Moreover, we discover a surprising intertwining phenomenon of interval maxima, which provides new information even in the most classical extremal problem of Chebyshev. Bibliography: 25 titles.
Keywords: minimax problem, Chebyshev polynomial, weighted Bojanov problem, kernel function, sum of translates function.
@article{SM_2023_214_8_a7,
     author = {B. Farkas and B. Nagy and Sz. Gy. R\'ev\'esz},
     title = {On the weighted {Bojanov-Chebyshev} problem and the sum of translates method of {Fenton}},
     journal = {Sbornik. Mathematics},
     pages = {1163--1190},
     year = {2023},
     volume = {214},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_8_a7/}
}
TY  - JOUR
AU  - B. Farkas
AU  - B. Nagy
AU  - Sz. Gy. Révész
TI  - On the weighted Bojanov-Chebyshev problem and the sum of translates method of Fenton
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1163
EP  - 1190
VL  - 214
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_8_a7/
LA  - en
ID  - SM_2023_214_8_a7
ER  - 
%0 Journal Article
%A B. Farkas
%A B. Nagy
%A Sz. Gy. Révész
%T On the weighted Bojanov-Chebyshev problem and the sum of translates method of Fenton
%J Sbornik. Mathematics
%D 2023
%P 1163-1190
%V 214
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2023_214_8_a7/
%G en
%F SM_2023_214_8_a7
B. Farkas; B. Nagy; Sz. Gy. Révész. On the weighted Bojanov-Chebyshev problem and the sum of translates method of Fenton. Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1163-1190. http://geodesic.mathdoc.fr/item/SM_2023_214_8_a7/

[1] G. Ambrus, K. M. Ball and T. Erdélyi, “Chebyshev constants for the unit circle”, Bull. Lond. Math. Soc., 45:2 (2013), 236–248 | DOI | MR | Zbl

[2] A. Berman and R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Classics Appl. Math., 9, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994, xx+340 pp. | DOI | MR | Zbl

[3] B. Bojanov and N. Naidenov, “Exact Markov-type inequalities for oscillating perfect splines”, Constr. Approx., 18:1 (2002), 37–59 | DOI | MR | Zbl

[4] B. Bojanov and N. Naidenov, “Alternation property and Markov's inequality for Tchebycheff systems”, East J. Approx., 10:4 (2004), 481–503 | MR | Zbl

[5] B. D. Bojanov and Q. I. Rahman, “On certain extremal problems for polynomials”, J. Math. Anal. Appl., 189:3 (1995), 781–800 | DOI | MR | Zbl

[6] B. D. Bojanov, “A generalization of Chebyshev polynomials”, J. Approx. Theory, 26:4 (1979), 293–300 | DOI | MR | Zbl

[7] P. Borwein and T. Erdélyi, Polynomials and polynomial inequalities, Grad. Texts in Math., 161, Springer-Verlag, New York, 1995, x+480 pp. | DOI | MR | Zbl

[8] O. V. Davydov, “A theorem about snakes for weak Cartesian systems”, Ukrainian Math. J., 47:3 (1995), 369–375 | DOI | MR | Zbl

[9] O. V. Davydov, “A class of weak Chebyshev spaces and characterization of best approximations”, J. Approx. Theory, 81:2 (1995), 250–259 | DOI | MR | Zbl

[10] B. Farkas, B. Nagy and S. G. Révész, “A homeomorphism theorem for sums of translates”, Rev. Mat. Complut., 2023, 1–49, Publ. online ; arXiv: 2112.11029 | DOI

[11] B. Farkas, B. Nagy and Sz. Gy. Révész, “A minimax problem for sums of translates on the torus”, Trans. London Math. Soc., 5:1 (2018), 1–46 | DOI | MR | Zbl

[12] P. C. Fenton, “The minimum of small entire functions”, Proc. Amer. Math. Soc., 81:4 (1981), 557–561 | DOI | MR | Zbl

[13] P. C. Fenton, “A min-max theorem for sums of translates of a function”, J. Math. Anal. Appl., 244:1 (2000), 214–222 | DOI | MR | Zbl

[14] P. C. Fenton, “$\cos\pi\lambda$ again”, Proc. Amer. Math. Soc., 131:6 (2003), 1875–1880 | DOI | MR | Zbl

[15] P. C. Fenton, “A refined $\cos\pi\rho$ theorem”, J. Math. Anal. Appl., 311:2 (2005), 675–682 | DOI | MR | Zbl

[16] A. A. Gol'dberg, “Minimum modulus of a meromorphic function of slow growth”, Math. Notes, 25:6 (1979), 432–437 | DOI | MR | Zbl

[17] A. Haar, “Die Minkowskische Geometrie und die Annäherung an stetige Funktionen”, Math. Ann., 78:1 (1917), 294–311 | DOI | MR | Zbl

[18] D. P. Hardin, A. P. Kendall and E. B. Saff, “Polarization optimality of equally spaced points on the circle for discrete potentials”, Discrete Comput. Geom., 50:1 (2013), 236–243 | DOI | MR | Zbl

[19] S. Karlin, “Representation theorems for positive functions”, J. Math. Mech., 12 (1963), 599–617 | MR | Zbl

[20] S. Karlin and W. J. Studden, Tchebycheff systems: with applications in analysis and statistics, Pure Appl. Math., 15, Interscience Publishers John Wiley Sons, New York–London–Sydney, 1966, xviii+586 pp. | MR | Zbl

[21] G. Nikolov and A. Shadrin, “On Markov-Duffin-Schaeffer inequalities with a majorant”, Constructive theory of functions (Sozopol 2010), Prof. M. Drinov Acad. Publ. House, Sofia, 2012, 227–264 | MR | Zbl

[22] G. Nikolov and A. Shadrin, “On Markov-Duffin-Schaeffer inequalities with a majorant. II”, Constructive theory of functions (Sozopol 2013), Prof. M. Drinov Acad. Publ. House, Sofia, 2014, 175–197 | MR | Zbl

[23] G. P. Nikolov, “Snake polynomials and Markov-type inequalities”, Approximation theory, DARBA, Sofia, 2002, 342–352 | MR | Zbl

[24] T. Parthasarathy, On global univalence theorems, Lecture Notes in Math., 977, Springer-Verlag, Berlin–New York, 1983, viii+106 pp. | DOI | MR | Zbl

[25] R. A. Rankin, “On the closest packing of spheres in $n$ dimensions”, Ann. of Math. (2), 48:4 (1947), 1062–1081 | DOI | MR | Zbl