A~remark on 0-cycles as modules over algebras of finite correspondences
Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1153-1162

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a smooth projective variety $X$ over a field, consider the $\mathbb Q$-vector space $Z_0(X)$ of 0-cycles (that is, formal finite $\mathbb Q$-linear combinations of closed points of $X$) as a module over the algebra of finite correspondences. Then the rationally trivial 0-cycles on $X$ form an absolutely simple and essential submodule of $Z_0(X)$. Bibliography: 15 titles.
Keywords: finite correspondences.
Mots-clés : 0-cycles, filtrations on 0-cycles
@article{SM_2023_214_8_a6,
     author = {M. Z. Rovinsky},
     title = {A~remark on 0-cycles as modules over algebras of finite correspondences},
     journal = {Sbornik. Mathematics},
     pages = {1153--1162},
     publisher = {mathdoc},
     volume = {214},
     number = {8},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_8_a6/}
}
TY  - JOUR
AU  - M. Z. Rovinsky
TI  - A~remark on 0-cycles as modules over algebras of finite correspondences
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1153
EP  - 1162
VL  - 214
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_8_a6/
LA  - en
ID  - SM_2023_214_8_a6
ER  - 
%0 Journal Article
%A M. Z. Rovinsky
%T A~remark on 0-cycles as modules over algebras of finite correspondences
%J Sbornik. Mathematics
%D 2023
%P 1153-1162
%V 214
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_8_a6/
%G en
%F SM_2023_214_8_a6
M. Z. Rovinsky. A~remark on 0-cycles as modules over algebras of finite correspondences. Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1153-1162. http://geodesic.mathdoc.fr/item/SM_2023_214_8_a6/