Mots-clés : 0-cycles, filtrations on 0-cycles
@article{SM_2023_214_8_a6,
author = {M. Z. Rovinsky},
title = {A~remark on 0-cycles as modules over algebras of finite correspondences},
journal = {Sbornik. Mathematics},
pages = {1153--1162},
year = {2023},
volume = {214},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_8_a6/}
}
M. Z. Rovinsky. A remark on 0-cycles as modules over algebras of finite correspondences. Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1153-1162. http://geodesic.mathdoc.fr/item/SM_2023_214_8_a6/
[1] A. Beilinson, “Remarks on $n$-motives and correspondences at the generic point”, Motives, polylogarithms and Hodge theory, Part I (Irvine, CA 1998), Int. Press Lect. Ser., 3, no. 1, Int. Press, Somerville, MA, 2002, 35–46 | MR | Zbl
[2] J. Bernstein, Draft of: Representations of $p$-adic groups, Lectures, written by K. E. Rumelhart (Harvard Univ. 1992), 110 pp. http://www.math.tau.ac.il/~bernstei/
[3] P. Cartier, “Representations of $\mathfrak p$-adic groups: a survey”, Automorphic forms, representations and $L$-functions, Part 1 (Oregon State Univ., Corvallis, OR 1977), Proc. Sympos. Pure Math., 33, Amer. Math. Soc., Providence, RI, 1979, 111–155 | DOI | MR | Zbl
[4] E. M. Friedlander and V. Voevodsky, “Bivariant cycle cohomology”, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 138–187 | DOI | MR | Zbl
[5] W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, Springer-Verlag, Berlin, 1984, xi+470 pp. | DOI | MR | Zbl
[6] R. S. Irving, “The socle filtration of a Verma module”, Ann. Sci. École Norm. Sup. (4), 21:1 (1988), 47–65 | MR | Zbl
[7] U. Jannsen, “Motives, numerical equivalence, and semi-simplicity”, Invent. Math., 107:3 (1992), 447–452 | DOI | MR | Zbl
[8] U. Jannsen, “Motivic sheaves and filtrations on Chow groups”, Motives, Part 1, Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994, 245–302 | DOI | MR | Zbl
[9] K. S. Kedlaya, “More étale covers of affine spaces in positive characteristic”, J. Algebraic Geom., 14:1 (2005), 187–192 | DOI | MR | Zbl
[10] M. Levine, “Mixed motives”, Handbook of $K$-theory, v. 1, Springer-Verlag, Berlin, 2005, 429–521 | DOI | MR | Zbl
[11] Ju. I. Manin (Yu. I. Manin), “Correspondences, motifs and monoidal transformations”, Math. USSR-Sb., 6:4 (1968), 439–470 | DOI | MR | Zbl
[12] P. Samuel, “Relations d'équivalence en géométrie algébrique”, Proceedings of the international congress of mathematicians (Edinburgh 1958), Cambridge Univ. Press, Cambridge, 1960, 470–487 | MR | Zbl
[13] A. Suslin and V. Voevodsky, “Singular homology of abstract algebraic varieties”, Invent. Math., 123:1 (1996), 61–94 | DOI | MR | Zbl
[14] V. Voevodsky, “Homology of schemes”, Selecta Math. (N.S.), 2:1 (1996), 111–153 | DOI | MR | Zbl
[15] V. Voevodsky, “Triangulated categories of motives over a field”, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 188–238 | MR | Zbl