A~remark on 0-cycles as modules over algebras of finite correspondences
Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1153-1162
Voir la notice de l'article provenant de la source Math-Net.Ru
Given a smooth projective variety $X$ over a field, consider the $\mathbb Q$-vector space $Z_0(X)$ of 0-cycles (that is, formal finite $\mathbb Q$-linear combinations of closed points of $X$) as a module over the algebra of finite correspondences. Then the rationally trivial 0-cycles on $X$ form an absolutely simple and essential submodule of $Z_0(X)$.
Bibliography: 15 titles.
Keywords:
finite correspondences.
Mots-clés : 0-cycles, filtrations on 0-cycles
Mots-clés : 0-cycles, filtrations on 0-cycles
@article{SM_2023_214_8_a6,
author = {M. Z. Rovinsky},
title = {A~remark on 0-cycles as modules over algebras of finite correspondences},
journal = {Sbornik. Mathematics},
pages = {1153--1162},
publisher = {mathdoc},
volume = {214},
number = {8},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_8_a6/}
}
M. Z. Rovinsky. A~remark on 0-cycles as modules over algebras of finite correspondences. Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1153-1162. http://geodesic.mathdoc.fr/item/SM_2023_214_8_a6/