A remark on 0-cycles as modules over algebras of finite correspondences
Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1153-1162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given a smooth projective variety $X$ over a field, consider the $\mathbb Q$-vector space $Z_0(X)$ of 0-cycles (that is, formal finite $\mathbb Q$-linear combinations of closed points of $X$) as a module over the algebra of finite correspondences. Then the rationally trivial 0-cycles on $X$ form an absolutely simple and essential submodule of $Z_0(X)$. Bibliography: 15 titles.
Keywords: finite correspondences.
Mots-clés : 0-cycles, filtrations on 0-cycles
@article{SM_2023_214_8_a6,
     author = {M. Z. Rovinsky},
     title = {A~remark on 0-cycles as modules over algebras of finite correspondences},
     journal = {Sbornik. Mathematics},
     pages = {1153--1162},
     year = {2023},
     volume = {214},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_8_a6/}
}
TY  - JOUR
AU  - M. Z. Rovinsky
TI  - A remark on 0-cycles as modules over algebras of finite correspondences
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1153
EP  - 1162
VL  - 214
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_8_a6/
LA  - en
ID  - SM_2023_214_8_a6
ER  - 
%0 Journal Article
%A M. Z. Rovinsky
%T A remark on 0-cycles as modules over algebras of finite correspondences
%J Sbornik. Mathematics
%D 2023
%P 1153-1162
%V 214
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2023_214_8_a6/
%G en
%F SM_2023_214_8_a6
M. Z. Rovinsky. A remark on 0-cycles as modules over algebras of finite correspondences. Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1153-1162. http://geodesic.mathdoc.fr/item/SM_2023_214_8_a6/

[1] A. Beilinson, “Remarks on $n$-motives and correspondences at the generic point”, Motives, polylogarithms and Hodge theory, Part I (Irvine, CA 1998), Int. Press Lect. Ser., 3, no. 1, Int. Press, Somerville, MA, 2002, 35–46 | MR | Zbl

[2] J. Bernstein, Draft of: Representations of $p$-adic groups, Lectures, written by K. E. Rumelhart (Harvard Univ. 1992), 110 pp. http://www.math.tau.ac.il/~bernstei/

[3] P. Cartier, “Representations of $\mathfrak p$-adic groups: a survey”, Automorphic forms, representations and $L$-functions, Part 1 (Oregon State Univ., Corvallis, OR 1977), Proc. Sympos. Pure Math., 33, Amer. Math. Soc., Providence, RI, 1979, 111–155 | DOI | MR | Zbl

[4] E. M. Friedlander and V. Voevodsky, “Bivariant cycle cohomology”, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 138–187 | DOI | MR | Zbl

[5] W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, Springer-Verlag, Berlin, 1984, xi+470 pp. | DOI | MR | Zbl

[6] R. S. Irving, “The socle filtration of a Verma module”, Ann. Sci. École Norm. Sup. (4), 21:1 (1988), 47–65 | MR | Zbl

[7] U. Jannsen, “Motives, numerical equivalence, and semi-simplicity”, Invent. Math., 107:3 (1992), 447–452 | DOI | MR | Zbl

[8] U. Jannsen, “Motivic sheaves and filtrations on Chow groups”, Motives, Part 1, Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994, 245–302 | DOI | MR | Zbl

[9] K. S. Kedlaya, “More étale covers of affine spaces in positive characteristic”, J. Algebraic Geom., 14:1 (2005), 187–192 | DOI | MR | Zbl

[10] M. Levine, “Mixed motives”, Handbook of $K$-theory, v. 1, Springer-Verlag, Berlin, 2005, 429–521 | DOI | MR | Zbl

[11] Ju. I. Manin (Yu. I. Manin), “Correspondences, motifs and monoidal transformations”, Math. USSR-Sb., 6:4 (1968), 439–470 | DOI | MR | Zbl

[12] P. Samuel, “Relations d'équivalence en géométrie algébrique”, Proceedings of the international congress of mathematicians (Edinburgh 1958), Cambridge Univ. Press, Cambridge, 1960, 470–487 | MR | Zbl

[13] A. Suslin and V. Voevodsky, “Singular homology of abstract algebraic varieties”, Invent. Math., 123:1 (1996), 61–94 | DOI | MR | Zbl

[14] V. Voevodsky, “Homology of schemes”, Selecta Math. (N.S.), 2:1 (1996), 111–153 | DOI | MR | Zbl

[15] V. Voevodsky, “Triangulated categories of motives over a field”, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 188–238 | MR | Zbl