Homology of transitive digraphs and discrete spaces
Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1121-1139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that for transitive digraphs path homology, and therefore also Alexandroff homology, coincides with singular cubic homology. Also, discrete topological spaces are defined that are natural analogues of standard topological cubes. Using them, the singular cubic homology of discrete topological spaces is defined, and it is proved that these homology groups coincide with the Alexandroff homology groups. Bibliography: 24 titles.
Keywords: transitive digraphs, Alexandroff homology, path homology, discrete topological spaces, digraph homology, homology of discrete topological spaces, singular cubic homology.
@article{SM_2023_214_8_a4,
     author = {Yu. V. Muranov and R. Jimenez},
     title = {Homology of transitive digraphs and discrete spaces},
     journal = {Sbornik. Mathematics},
     pages = {1121--1139},
     year = {2023},
     volume = {214},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_8_a4/}
}
TY  - JOUR
AU  - Yu. V. Muranov
AU  - R. Jimenez
TI  - Homology of transitive digraphs and discrete spaces
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1121
EP  - 1139
VL  - 214
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_8_a4/
LA  - en
ID  - SM_2023_214_8_a4
ER  - 
%0 Journal Article
%A Yu. V. Muranov
%A R. Jimenez
%T Homology of transitive digraphs and discrete spaces
%J Sbornik. Mathematics
%D 2023
%P 1121-1139
%V 214
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2023_214_8_a4/
%G en
%F SM_2023_214_8_a4
Yu. V. Muranov; R. Jimenez. Homology of transitive digraphs and discrete spaces. Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1121-1139. http://geodesic.mathdoc.fr/item/SM_2023_214_8_a4/

[1] A. Connes, “Non-commutative differential geometry”, Inst. Hautes Études Sci. Publ. Math., 62 (1985), 41–144 | DOI | MR | Zbl

[2] A. Dimakis and F. Müller-Hoissen, “Discrete differential calculus: graphs, topologies, and gauge theory”, J. Math. Phys., 35:12 (1994), 6703–6735 | DOI | MR | Zbl

[3] A. Dimakis, F. Müller-Hoissen and F. Vanderseypen, “Discrete differential manifolds and dynamics on networks”, J. Math. Phys., 36:7 (1995), 3771–3791 | DOI | MR | Zbl

[4] A. Grigor'yan, Yong Lin, Yu. Muranov and Shing-Tung Yau, “Cohomology of digraphs and (undirected) graphs”, Asian J. Math., 19:5 (2015), 887–932 | DOI | MR | Zbl

[5] G. Hochschild, “On the cohomology groups of an associative algebra”, Ann. of Math. (2), 46:1 (1945), 58–67 | DOI | MR | Zbl

[6] M. Gerstenhaber and S. D. Schack, “Simplicial cohomology is Hochschild cohomology”, J. Pure Appl. Algebra, 30:2 (1983), 143–156 | DOI | MR | Zbl

[7] A. Grigor'yan, Yu. Muranov and Shing-Tung Yau, “On a cohomology of digraphs and Hochschild cohomology”, J. Homotopy Relat. Struct., 11:2 (2016), 209–230 | DOI | MR | Zbl

[8] A. Grigor'yan, Y. V. Muranov and Shing-Tung Yau, “Graphs associated with simplicial complexes”, Homology Homotopy Appl., 16:1 (2014), 295–311 | DOI | MR | Zbl

[9] A. A. Grigor'yan, Yong Lin, Y. V. Muranov and Shing-Tung Yau, “Path complexes and their homologies”, J. Math. Sci. (N.Y.), 248:5 (2020), 564–599 | DOI | MR | Zbl

[10] A. Grigor'yan, Yong Lin, Yu. Muranov and Shing-Tung Yau, “Homotopy theory for digraphs”, Pure Appl. Math. Q., 10:4 (2014), 619–674 | DOI | MR | Zbl

[11] A. A. Grigor'yan, R. Jimenez, Y. Muranov and Shing-Tung Yau, “On the path homology theory of digraphs and Eilenberg-Steenrod axioms”, Homology Homotopy Appl., 20:2 (2018), 179–205 | DOI | MR | Zbl

[12] A. A. Grigor'yan, Yu. V. Muranov and R. B. Jimenez, “Homology of digraphs”, Math. Notes, 109:5 (2021), 712–726 | DOI | MR | Zbl

[13] Yu. V. Muranov, “Alexandroff homology and path homology”, Math. Notes, 112:1 (2022), 159–162 | DOI | MR | Zbl

[14] P. Alexandroff, “Discrete Räume”, Mat. Sb., 2(44):3 (1937), 501–519 | Zbl

[15] P. S. Alexandroff, “On the concept of space in topology”, Uspekhi Mat. Nauk, 2:1(17) (1947), 5–57 (Russian) | MR | Zbl

[16] J. W. Evans, F. Harary and M. S. Lynn, “On the computer enumeration of finite topologies”, Comm. ACM, 10:5 (1967), 295–297 | DOI | Zbl

[17] C. Marijuán, “Finite topologies and digraphs”, Proyecciones, 29:3 (2010), 291–307 | DOI | MR | Zbl

[18] M. C. McCord, “Singular homology groups and homotopy groups of finite topological spaces”, Duke Math. J., 33:3 (1966), 465–474 | DOI | MR | Zbl

[19] R. E. Stong, “Finite topological spaces”, Trans. Amer. Math. Soc., 123 (1966), 325–340 | DOI | MR | Zbl

[20] M. L. Wachs, “Poset topology: tools and applications”, Geometric combinatorics, IAS/Park City Math. Ser., 13, Amer. Math. Soc., Providence, RI, 2007, 497–615 | DOI | MR | Zbl

[21] J. A. Barmak, Algebraic topology on finite topological spaces and applications, Lecture Notes in Math., 2032, Springer, Berlin, 2011, xviii+170 pp. | DOI | MR | Zbl

[22] P. J Hilton and S. Wylie, Homology theory. An introduction to algebraic topology, Cambridge Univ. Press, New York, 1960, xv+484 pp. | MR | Zbl

[23] A. Hatcher, Algebraic topology, Cambridge Univ. Press, Cambridge, 2002, xii+544 pp. | MR | Zbl

[24] V. V. Prasolov, Elements of homology theory, Grad. Stud. Math., 81, Amer. Math. Soc., Providence, RI, 2007, x+418 pp. | DOI | MR | Zbl