Explicit deformation of the horospherical variety of type $\mathrm{G}_2$
Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1111-1120

Voir la notice de l'article provenant de la source Math-Net.Ru

We give two simple geometric constructions of a smooth family of projective varieties with central fiber isomorphic to the horospherical variety of type $\mathrm{G}_2$ and all other fibers isomorphic to the isotropic orthogonal Grassmannian $\operatorname{OGr}(2,7)$, and we discuss briefly the derived category of this family. Bibliography: 8 titles.
Keywords: horospherical varieties, smooth degeneration, exceptional collection.
@article{SM_2023_214_8_a3,
     author = {A. G. Kuznetsov},
     title = {Explicit deformation of the horospherical variety of type $\mathrm{G}_2$},
     journal = {Sbornik. Mathematics},
     pages = {1111--1120},
     publisher = {mathdoc},
     volume = {214},
     number = {8},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_8_a3/}
}
TY  - JOUR
AU  - A. G. Kuznetsov
TI  - Explicit deformation of the horospherical variety of type $\mathrm{G}_2$
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1111
EP  - 1120
VL  - 214
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_8_a3/
LA  - en
ID  - SM_2023_214_8_a3
ER  - 
%0 Journal Article
%A A. G. Kuznetsov
%T Explicit deformation of the horospherical variety of type $\mathrm{G}_2$
%J Sbornik. Mathematics
%D 2023
%P 1111-1120
%V 214
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_8_a3/
%G en
%F SM_2023_214_8_a3
A. G. Kuznetsov. Explicit deformation of the horospherical variety of type $\mathrm{G}_2$. Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1111-1120. http://geodesic.mathdoc.fr/item/SM_2023_214_8_a3/