Explicit deformation of the horospherical variety of type $\mathrm{G}_2$
Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1111-1120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give two simple geometric constructions of a smooth family of projective varieties with central fiber isomorphic to the horospherical variety of type $\mathrm{G}_2$ and all other fibers isomorphic to the isotropic orthogonal Grassmannian $\operatorname{OGr}(2,7)$, and we discuss briefly the derived category of this family. Bibliography: 8 titles.
Keywords: horospherical varieties, smooth degeneration, exceptional collection.
@article{SM_2023_214_8_a3,
     author = {A. G. Kuznetsov},
     title = {Explicit deformation of the horospherical variety of type $\mathrm{G}_2$},
     journal = {Sbornik. Mathematics},
     pages = {1111--1120},
     year = {2023},
     volume = {214},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_8_a3/}
}
TY  - JOUR
AU  - A. G. Kuznetsov
TI  - Explicit deformation of the horospherical variety of type $\mathrm{G}_2$
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1111
EP  - 1120
VL  - 214
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_8_a3/
LA  - en
ID  - SM_2023_214_8_a3
ER  - 
%0 Journal Article
%A A. G. Kuznetsov
%T Explicit deformation of the horospherical variety of type $\mathrm{G}_2$
%J Sbornik. Mathematics
%D 2023
%P 1111-1120
%V 214
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2023_214_8_a3/
%G en
%F SM_2023_214_8_a3
A. G. Kuznetsov. Explicit deformation of the horospherical variety of type $\mathrm{G}_2$. Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1111-1120. http://geodesic.mathdoc.fr/item/SM_2023_214_8_a3/

[1] R. Gonzales, C. Pech, N. Perrin and A. Samokhin, “Geometry of horospherical varieties of Picard rank one”, Int. Math. Res. Not. IMRN, 2022:12 (2022), 8916–9012 | DOI | MR | Zbl

[2] A. G. Kuznetsov, “Hyperplane sections and derived categories”, Izv. Math., 70:3 (2006), 447–547 | DOI | MR | Zbl

[3] A. Kuznetsov, “Exceptional collections for Grassmannians of isotropic lines”, Proc. Lond. Math. Soc. (3), 97:1 (2008), 155–182 | DOI | MR | Zbl

[4] A. Kuznetsov, “Base change for semiorthogonal decompositions”, Compos. Math., 147:3 (2011), 852–876 | DOI | MR | Zbl

[5] A. G. Kuznetsov, “On linear sections of the spinor tenfold. I”, Izv. Math., 82:4 (2018), 694–751 | DOI | MR | Zbl

[6] A. Kuznetsov, “Derived equivalence of Ito-Miura-Okawa-Ueda Calabi-Yau 3-folds”, J. Math. Soc. Japan, 70:3 (2018), 1007–1013 | DOI | MR | Zbl

[7] B. Pasquier, “On some smooth projective two-orbit varieties with Picard number 1”, Math. Ann., 344:4 (2009), 963–987 | DOI | MR | Zbl

[8] B. Pasquier and N. Perrin, “Local rigidity of quasi-regular varieties”, Math. Z., 265:3 (2010), 589–600 | DOI | MR | Zbl