Explicit deformation of the horospherical variety of type $\mathrm{G}_2$
Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1111-1120
Voir la notice de l'article provenant de la source Math-Net.Ru
We give two simple geometric constructions of a smooth family of projective varieties with central fiber isomorphic to the horospherical variety of type $\mathrm{G}_2$ and all other fibers isomorphic to the isotropic orthogonal Grassmannian $\operatorname{OGr}(2,7)$, and we discuss briefly the derived category of this family.
Bibliography: 8 titles.
Keywords:
horospherical varieties, smooth degeneration, exceptional collection.
@article{SM_2023_214_8_a3,
author = {A. G. Kuznetsov},
title = {Explicit deformation of the horospherical variety of type $\mathrm{G}_2$},
journal = {Sbornik. Mathematics},
pages = {1111--1120},
publisher = {mathdoc},
volume = {214},
number = {8},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_8_a3/}
}
A. G. Kuznetsov. Explicit deformation of the horospherical variety of type $\mathrm{G}_2$. Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1111-1120. http://geodesic.mathdoc.fr/item/SM_2023_214_8_a3/