@article{SM_2023_214_8_a3,
author = {A. G. Kuznetsov},
title = {Explicit deformation of the horospherical variety of type $\mathrm{G}_2$},
journal = {Sbornik. Mathematics},
pages = {1111--1120},
year = {2023},
volume = {214},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_8_a3/}
}
A. G. Kuznetsov. Explicit deformation of the horospherical variety of type $\mathrm{G}_2$. Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1111-1120. http://geodesic.mathdoc.fr/item/SM_2023_214_8_a3/
[1] R. Gonzales, C. Pech, N. Perrin and A. Samokhin, “Geometry of horospherical varieties of Picard rank one”, Int. Math. Res. Not. IMRN, 2022:12 (2022), 8916–9012 | DOI | MR | Zbl
[2] A. G. Kuznetsov, “Hyperplane sections and derived categories”, Izv. Math., 70:3 (2006), 447–547 | DOI | MR | Zbl
[3] A. Kuznetsov, “Exceptional collections for Grassmannians of isotropic lines”, Proc. Lond. Math. Soc. (3), 97:1 (2008), 155–182 | DOI | MR | Zbl
[4] A. Kuznetsov, “Base change for semiorthogonal decompositions”, Compos. Math., 147:3 (2011), 852–876 | DOI | MR | Zbl
[5] A. G. Kuznetsov, “On linear sections of the spinor tenfold. I”, Izv. Math., 82:4 (2018), 694–751 | DOI | MR | Zbl
[6] A. Kuznetsov, “Derived equivalence of Ito-Miura-Okawa-Ueda Calabi-Yau 3-folds”, J. Math. Soc. Japan, 70:3 (2018), 1007–1013 | DOI | MR | Zbl
[7] B. Pasquier, “On some smooth projective two-orbit varieties with Picard number 1”, Math. Ann., 344:4 (2009), 963–987 | DOI | MR | Zbl
[8] B. Pasquier and N. Perrin, “Local rigidity of quasi-regular varieties”, Math. Z., 265:3 (2010), 589–600 | DOI | MR | Zbl