Symmetric matrices and maximal Nijenhuis pencils
Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1101-1110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Nijenhuis pencil is a linear subspace of the space of $(1,1)$ tensor field which consists of Nijenhuis operators. The problem of the description of maximal (by inclusion) Nijenhuis pencils containing a subpencil of dimension $n(n+1)/2$ such that the operators in it are — in some system of coordinates — constant symmetric matrices, is solved. Two such pencils turn out to exist, both of which arise in a natural way in applications, for example, in the theory of infinite-dimensional integrable systems. Bibliography: 6 titles.
Keywords: geometry, Frölicher-Nijenhuis bracket, Nijenhuis pencils.
@article{SM_2023_214_8_a2,
     author = {A. Yu. Konyaev},
     title = {Symmetric matrices and maximal {Nijenhuis} pencils},
     journal = {Sbornik. Mathematics},
     pages = {1101--1110},
     year = {2023},
     volume = {214},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_8_a2/}
}
TY  - JOUR
AU  - A. Yu. Konyaev
TI  - Symmetric matrices and maximal Nijenhuis pencils
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1101
EP  - 1110
VL  - 214
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_8_a2/
LA  - en
ID  - SM_2023_214_8_a2
ER  - 
%0 Journal Article
%A A. Yu. Konyaev
%T Symmetric matrices and maximal Nijenhuis pencils
%J Sbornik. Mathematics
%D 2023
%P 1101-1110
%V 214
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2023_214_8_a2/
%G en
%F SM_2023_214_8_a2
A. Yu. Konyaev. Symmetric matrices and maximal Nijenhuis pencils. Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1101-1110. http://geodesic.mathdoc.fr/item/SM_2023_214_8_a2/

[1] A. V. Bolsinov, A. Yu. Konyaev and V. S. Matveev, “Nijenhuis geometry”, Adv. Math., 394 (2022), 108001, 52 pp. | DOI | MR | Zbl

[2] A. Yu. Konyaev, “Nijenhuis geometry II: Left-symmetric algebras and linearization problem for Nijenhuis operators”, Differential Geom. Appl., 74 (2021), 101706, 32 pp. | DOI | MR | Zbl

[3] T. Takeuchi, “On the construction of recursion operators for the Kerr-Newman and FRLW metrics”, J. Geom. Symmetry Phys., 37 (2015), 85–96 | DOI | MR | Zbl

[4] A. V. Bolsinov, A. Yu. Konyaev and V. S. Matveev, “Applications of Nijenhuis geometry II: maximal pencils of multi-Hamiltonian structures of hydrodynamic type”, Nonlinearity, 34:8 (2021), 5136–5162 | DOI | MR | Zbl

[5] F. Magri, “Lenard chains for classical integrable systems”, Theoret. and Math. Phys., 137:3 (2003), 1716–1722 | DOI | MR | Zbl

[6] O. I. Mokhov, “Pencils of compatible metrics and integrable systems”, Russian Math. Surveys, 72:5 (2017), 889–937 | DOI | MR | Zbl