@article{SM_2023_214_8_a2,
author = {A. Yu. Konyaev},
title = {Symmetric matrices and maximal {Nijenhuis} pencils},
journal = {Sbornik. Mathematics},
pages = {1101--1110},
year = {2023},
volume = {214},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_8_a2/}
}
A. Yu. Konyaev. Symmetric matrices and maximal Nijenhuis pencils. Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1101-1110. http://geodesic.mathdoc.fr/item/SM_2023_214_8_a2/
[1] A. V. Bolsinov, A. Yu. Konyaev and V. S. Matveev, “Nijenhuis geometry”, Adv. Math., 394 (2022), 108001, 52 pp. | DOI | MR | Zbl
[2] A. Yu. Konyaev, “Nijenhuis geometry II: Left-symmetric algebras and linearization problem for Nijenhuis operators”, Differential Geom. Appl., 74 (2021), 101706, 32 pp. | DOI | MR | Zbl
[3] T. Takeuchi, “On the construction of recursion operators for the Kerr-Newman and FRLW metrics”, J. Geom. Symmetry Phys., 37 (2015), 85–96 | DOI | MR | Zbl
[4] A. V. Bolsinov, A. Yu. Konyaev and V. S. Matveev, “Applications of Nijenhuis geometry II: maximal pencils of multi-Hamiltonian structures of hydrodynamic type”, Nonlinearity, 34:8 (2021), 5136–5162 | DOI | MR | Zbl
[5] F. Magri, “Lenard chains for classical integrable systems”, Theoret. and Math. Phys., 137:3 (2003), 1716–1722 | DOI | MR | Zbl
[6] O. I. Mokhov, “Pencils of compatible metrics and integrable systems”, Russian Math. Surveys, 72:5 (2017), 889–937 | DOI | MR | Zbl