Solvability of the Nevanlinna-Pick interpolation problem
Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1066-1100
Voir la notice de l'article provenant de la source Math-Net.Ru
A solvability theorem is proved for the Nevanlinna-Pick interpolation problem. Its extreme cases are Carathéodory's and Sсhur's criteria on the one hand (when all interpolation points coincide) and the Krein-Rekhtman theorem on the other (when the interpolation points are pairwise distinct).
Bibliography: 19 titles.
Keywords:
Carath'eodory functions, Nevanlinna functions, Schur functions, moment problem, Krein-Rekhtman theorem.
@article{SM_2023_214_8_a1,
author = {V. I. Buslaev},
title = {Solvability of the {Nevanlinna-Pick} interpolation problem},
journal = {Sbornik. Mathematics},
pages = {1066--1100},
publisher = {mathdoc},
volume = {214},
number = {8},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_8_a1/}
}
V. I. Buslaev. Solvability of the Nevanlinna-Pick interpolation problem. Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1066-1100. http://geodesic.mathdoc.fr/item/SM_2023_214_8_a1/