Solvability of the Nevanlinna-Pick interpolation problem
Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1066-1100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A solvability theorem is proved for the Nevanlinna-Pick interpolation problem. Its extreme cases are Carathéodory's and Sсhur's criteria on the one hand (when all interpolation points coincide) and the Krein-Rekhtman theorem on the other (when the interpolation points are pairwise distinct). Bibliography: 19 titles.
Keywords: Carath'eodory functions, Nevanlinna functions, Schur functions, moment problem, Krein-Rekhtman theorem.
@article{SM_2023_214_8_a1,
     author = {V. I. Buslaev},
     title = {Solvability of the {Nevanlinna-Pick} interpolation problem},
     journal = {Sbornik. Mathematics},
     pages = {1066--1100},
     year = {2023},
     volume = {214},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_8_a1/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - Solvability of the Nevanlinna-Pick interpolation problem
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1066
EP  - 1100
VL  - 214
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_8_a1/
LA  - en
ID  - SM_2023_214_8_a1
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T Solvability of the Nevanlinna-Pick interpolation problem
%J Sbornik. Mathematics
%D 2023
%P 1066-1100
%V 214
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2023_214_8_a1/
%G en
%F SM_2023_214_8_a1
V. I. Buslaev. Solvability of the Nevanlinna-Pick interpolation problem. Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1066-1100. http://geodesic.mathdoc.fr/item/SM_2023_214_8_a1/

[1] L. Baratchart, M. Olivi and F. Seyfert, “Boundary Nevanlinna-Pick interpolation with prescribed peak points. Application to impedance matching”, SIAM J. Math. Anal., 49:2 (2017), 1131–1165 | DOI | MR | Zbl

[2] C. Carathéodory, “Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen”, Math. Ann., 64:1 (1907), 95–115 | DOI | MR | Zbl

[3] I. Schur, “Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind”, J. Reine Angew. Math., 1917:147 (1917), 205–232 ; 1918:148 (1918), 122–145 | DOI | MR | Zbl | DOI | MR

[4] G. Herglotz, “Über Potenzreihen mit positivem, reellem Teil im Einheitskreis”, Leipz. Ber., 63 (1911), 501–511 | Zbl

[5] M. G. Krein and P. G. Rekhtman, “On Nevanlinna-Pick problem”, Tr. Odess. Gos. Univ., 2 (1938), 63–68 (Ukrainian)

[6] G. Pick, “Über die Beschränkungen analytischer Funktionen, welche durch vorgegebene Functionswerte bewirkt werden”, Math. Ann., 77:1 (1915), 7–23 | DOI | MR | Zbl

[7] R. Nevanlinna, “Über beschränkte Funktionen die in gegebenen Punkten vorgeschriebene Werte annehmen”, Ann. Acad. Sci. Fenn. Ser. A, 13 (1920), 1, 71 pp. | Zbl

[8] I. V. Kovalishina, “Analytic theory of a class of interpolation problems”, Math. USSR-Izv., 22:3 (1984), 419–463 | DOI | MR | Zbl

[9] G. Khudaiberganov, “Holomorphic functions of matrices and some related problems in complex analysis. I”, Uzbek. Mat. Zh.:2 (1991), 42–47 (Russian) ; II:4, 51–59 | MR | MR

[10] M. B. Abrahamse, “The Pick interpolation theorem for finitely connected domains”, Michigan Math. J., 26:2 (1979), 195–203 | DOI | MR | Zbl

[11] D. Sarason, “Nevanlinna-Pick interpolation with boundary data”, Integral Equations Operator Theory, 30:2 (1998), 231–250 | DOI | MR | Zbl

[12] V. I. Buslaev, “On the Krein-Rechtman theorem in the presence of multiple points”, Math. Notes, 112:2 (2022), 313–317 | DOI | MR | Zbl

[13] V. I. Buslaev, “Schur's criterion for formal power series”, Sb. Math., 210:11 (2019), 1563–1580 | DOI | MR | Zbl

[14] V. I. Buslaev, “Convergence of a limit periodic Schur continued fraction”, Math. Notes, 107:5 (2020), 701–712 | DOI | MR | Zbl

[15] V. I. Buslaev, “Schur's criterion for formal Newton series”, Math. Notes, 108:6 (2020), 884–888 | DOI | MR | Zbl

[16] V. I. Buslaev, “Necessary and sufficient conditions for extending a function to a Schur function”, Sb. Math., 211:12 (2020), 1660–1703 | DOI | MR | Zbl

[17] V. I. Buslaev, “Necessary and sufficient conditions for extending a function to a Carathéodory function”, Sb. Math., 213:11 (2022), 1488–1506 | DOI | MR

[18] H. Hamburger, “Über eine Erweiterung des Stieltjesschen Momentenproblems”, Math. Ann., 81:2–4 (1920), 235–319 ; 82:1–2 (1920), 120–164 ; 82:3–4 (1921), 168–187 | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl

[19] R. Nevanlinna, “Asymptotische Entwicklungen beschränkter Funktionen und das Stieltjessche Momentenproblem”, Ann. Acad. Sci. Fenn. Ser. A, 18 (1922), 5, 53 pp. | Zbl