Mots-clés : polynomial, algebraic invariant
@article{SM_2023_214_8_a0,
author = {Yu. A. Aminov},
title = {Existence of polynomial solutions of degree~4 of the {Monge-Amp\`ere} equation. {Large} deflections of thin plates},
journal = {Sbornik. Mathematics},
pages = {1051--1065},
year = {2023},
volume = {214},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_8_a0/}
}
TY - JOUR AU - Yu. A. Aminov TI - Existence of polynomial solutions of degree 4 of the Monge-Ampère equation. Large deflections of thin plates JO - Sbornik. Mathematics PY - 2023 SP - 1051 EP - 1065 VL - 214 IS - 8 UR - http://geodesic.mathdoc.fr/item/SM_2023_214_8_a0/ LA - en ID - SM_2023_214_8_a0 ER -
Yu. A. Aminov. Existence of polynomial solutions of degree 4 of the Monge-Ampère equation. Large deflections of thin plates. Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1051-1065. http://geodesic.mathdoc.fr/item/SM_2023_214_8_a0/
[1] K. Jörgens, “Über die Lösungen der Differentialgleichung $rt-s^2=1$”, Math. Ann., 127 (1954), 130–134 | DOI | MR | Zbl
[2] Yu. A. Aminov, “The action of the Monge-Ampère operator on polynomials in the plane and its fixed points of polynomial type”, Sb. Math., 210:12 (2019), 1663–1689 | DOI | MR | Zbl
[3] Yu. Aminov, K. Arslan, B. (Kiliç) Bayram, B. Bulca, C. Murathan and G. Öztürk, “On the solution of the Monge-Ampère equation $Z_{xx}Z_{yy}-Z_{xy}^{2}=f(x,y)$ with quadratic right side”, J. Math. Phys. Anal. Geom., 7:3 (2011), 203–211 | MR | Zbl
[4] L. D. Landau and E. M. Lifschitz, Theory of elasticity, v. 7, Course of Theoretical Physics, Pergamon, Oxford, 1970, viii+165 pp. | MR | Zbl
[5] Yu. A. Aminov, “Polynomial solutions of the Monge-Ampère equation”, Sb. Math., 205:11 (2014), 1529–1563 | DOI | MR | Zbl
[6] N. V. Efimov, “Differential criteria for homeomorphism of certain mappings with applications to the theory of surfaces”, Math. USSR-Sb., 5:4 (1968), 475–488 | DOI | MR | Zbl
[7] B. E. Kantor, “On the problem of the normal image of a complete surface of negative curvature”, Math. USSR-Sb., 11:2 (1970), 197–200 | DOI | MR | Zbl
[8] S. P. Geĭsberg, “On the properties of the normal mapping generated by the equations $rt-s^2=-f^2(x,y)$”, Math. USSR-Sb., 11:2 (1970), 201–208 | DOI | MR | Zbl
[9] É. Goursat, Cours d'analyse mathématique, Ch. XXX–XXXIV, v. III, 5 ed., Gauthier-Villars, Paris, 1933, 323–655 | MR | Zbl