Existence of polynomial solutions of degree 4 of the Monge-Ampère equation. Large deflections of thin plates
Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1051-1065 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We provide necessary and sufficient conditions for the solvability of a simplest Monge-Ampère equation, assuming that both the right-hand side and the solution are polynomials of degree 4. We give a constructive method of solution of the basic system of algebraic equations corresponding to the Monge-Ampère operator under the above conditions on the prescribed polynomial. Applications to large deflections of thin plates are presented. Bibliography: 9 titles.
Keywords: five-dimensional space, solvability, mapping, thin plate, Airy function, deflection.
Mots-clés : polynomial, algebraic invariant
@article{SM_2023_214_8_a0,
     author = {Yu. A. Aminov},
     title = {Existence of polynomial solutions of degree~4 of the {Monge-Amp\`ere} equation. {Large} deflections of thin plates},
     journal = {Sbornik. Mathematics},
     pages = {1051--1065},
     year = {2023},
     volume = {214},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_8_a0/}
}
TY  - JOUR
AU  - Yu. A. Aminov
TI  - Existence of polynomial solutions of degree 4 of the Monge-Ampère equation. Large deflections of thin plates
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1051
EP  - 1065
VL  - 214
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_8_a0/
LA  - en
ID  - SM_2023_214_8_a0
ER  - 
%0 Journal Article
%A Yu. A. Aminov
%T Existence of polynomial solutions of degree 4 of the Monge-Ampère equation. Large deflections of thin plates
%J Sbornik. Mathematics
%D 2023
%P 1051-1065
%V 214
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2023_214_8_a0/
%G en
%F SM_2023_214_8_a0
Yu. A. Aminov. Existence of polynomial solutions of degree 4 of the Monge-Ampère equation. Large deflections of thin plates. Sbornik. Mathematics, Tome 214 (2023) no. 8, pp. 1051-1065. http://geodesic.mathdoc.fr/item/SM_2023_214_8_a0/

[1] K. Jörgens, “Über die Lösungen der Differentialgleichung $rt-s^2=1$”, Math. Ann., 127 (1954), 130–134 | DOI | MR | Zbl

[2] Yu. A. Aminov, “The action of the Monge-Ampère operator on polynomials in the plane and its fixed points of polynomial type”, Sb. Math., 210:12 (2019), 1663–1689 | DOI | MR | Zbl

[3] Yu. Aminov, K. Arslan, B. (Kiliç) Bayram, B. Bulca, C. Murathan and G. Öztürk, “On the solution of the Monge-Ampère equation $Z_{xx}Z_{yy}-Z_{xy}^{2}=f(x,y)$ with quadratic right side”, J. Math. Phys. Anal. Geom., 7:3 (2011), 203–211 | MR | Zbl

[4] L. D. Landau and E. M. Lifschitz, Theory of elasticity, v. 7, Course of Theoretical Physics, Pergamon, Oxford, 1970, viii+165 pp. | MR | Zbl

[5] Yu. A. Aminov, “Polynomial solutions of the Monge-Ampère equation”, Sb. Math., 205:11 (2014), 1529–1563 | DOI | MR | Zbl

[6] N. V. Efimov, “Differential criteria for homeomorphism of certain mappings with applications to the theory of surfaces”, Math. USSR-Sb., 5:4 (1968), 475–488 | DOI | MR | Zbl

[7] B. E. Kantor, “On the problem of the normal image of a complete surface of negative curvature”, Math. USSR-Sb., 11:2 (1970), 197–200 | DOI | MR | Zbl

[8] S. P. Geĭsberg, “On the properties of the normal mapping generated by the equations $rt-s^2=-f^2(x,y)$”, Math. USSR-Sb., 11:2 (1970), 201–208 | DOI | MR | Zbl

[9] É. Goursat, Cours d'analyse mathématique, Ch. XXX–XXXIV, v. III, 5 ed., Gauthier-Villars, Paris, 1933, 323–655 | MR | Zbl