@article{SM_2023_214_7_a5,
author = {P. I. Naumkin},
title = {Logarithmic nature of the long-time asymptotics of solutions of {a~Sobolev-type} nonlinear equations with cubic nonlinearities},
journal = {Sbornik. Mathematics},
pages = {1024--1050},
year = {2023},
volume = {214},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_7_a5/}
}
TY - JOUR AU - P. I. Naumkin TI - Logarithmic nature of the long-time asymptotics of solutions of a Sobolev-type nonlinear equations with cubic nonlinearities JO - Sbornik. Mathematics PY - 2023 SP - 1024 EP - 1050 VL - 214 IS - 7 UR - http://geodesic.mathdoc.fr/item/SM_2023_214_7_a5/ LA - en ID - SM_2023_214_7_a5 ER -
P. I. Naumkin. Logarithmic nature of the long-time asymptotics of solutions of a Sobolev-type nonlinear equations with cubic nonlinearities. Sbornik. Mathematics, Tome 214 (2023) no. 7, pp. 1024-1050. http://geodesic.mathdoc.fr/item/SM_2023_214_7_a5/
[1] S. L. Sobolev, “On a new problem in mathematical physics”, Izv. Akad. Nauk SSSR. Ser. Mat., 18:1 (1954), 3–50 (Russian) | MR | Zbl
[2] A. G. Sveshnikov, A. B. Al'shin, M. O. Korpusov and Yu. D. Pletner, Linear and nonlinear equations of Sobolev type, Fizmatlit, Moscow, 2007, 734 pp. (Russian) | Zbl
[3] A. B. Al'shin, M. O. Korpusov and A. G. Sveshnikov, Blow-up in nonlinear Sobolev type equations, De Gruyter Ser. Nonlinear Anal. Appl., 15, Walter de Gruyter Co., Berlin, 2011, xii+648 pp. | DOI | MR | Zbl
[4] M. O. Korpusov, A. V. Ovchinnikov, A. G. Sveshnikov and E. V. Yushkov, Blow-up in nonlinear equations of mathematical physics. Theory and methods, De Gruyter Ser. Nonlinear Anal. Appl., 27, De Gruyter, Berlin, 2018, xviii+326 pp. | DOI | MR | Zbl
[5] E. I. Kaikina, P. I. Naumkin and I. A. Shishmarev, “The Cauchy problem for an equation of Sobolev type with power non-linearity”, Izv. Math., 69:1 (2005), 59–111 | DOI | MR | Zbl
[6] E. I. Kaikina, P. I. Naumkin and I. A. Shishmarev, “Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations”, Russian Math. Surveys, 64:3 (2009), 399–468 | DOI | MR | Zbl
[7] N. Hayashi and P. I. Naumkin, “Nongauge invariant cubic nonlinear Schrödinger equations”, Pac. J. Appl. Math. Yearbook, 1 (2012), 1–16
[8] P. I. Naumkin and I. Sánchez-Suárez, “On the critical nongauge invariant nonlinear Schrödinger equation”, Discrete Contin. Dyn. Syst., 30:3 (2011), 807–834 | DOI | MR | Zbl
[9] N. Hayashi and P. I. Naumkin, “Global existence for the cubic nonlinear Schrodinger equation in low order Sobolev spaces”, Differential Integral Equations, 24:9–10 (2011), 801–828 | DOI | MR | Zbl
[10] N. Hayashi and T. Ozawa, “Scattering theory in the weighted $L^{2}(\mathbb R^{n})$ spaces for some Schrödinger equations”, Ann. Inst. H. Poincaré Phys. Théor., 48:1 (1988), 17–37 | MR | Zbl
[11] N. Hayashi and P. I. Naumkin, “The initial value problem for the cubic nonlinear Klein-Gordon equation”, Z. Angew. Math. Phys., 59:6 (2008), 1002–1028 | DOI | MR | Zbl
[12] N. Hayashi and P. I. Naumkin, “Factorization technique for the modified Korteweg-de Vries equation”, SUT J. Math., 52:1 (2016), 49–95 | DOI | MR | Zbl
[13] P. I. Naumkin, “Asymptotics of solutions of a modified Whitham equation with surface tension”, Izv. Math., 83:2 (2019), 361–390 | DOI | MR | Zbl
[14] P. I. Naumkin, “Time decay estimates for solutions of the Cauchy problem for the modified Kawahara equation”, Sb. Math., 210:5 (2019), 693–730 | DOI | MR | Zbl
[15] M. V. Fedoryuk, Asymptotics: integrals and series, Nauka, Moscow, 1987, 544 pp. (Russian) | MR | Zbl
[16] A. P. Calderón and R. Vaillancourt, “A class of bounded pseudo-differential operators”, Proc. Nat. Acad. Sci. U.S.A., 69:5 (1972), 1185–1187 | DOI | MR | Zbl
[17] R. R. Coifman and Y. Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque, 57, Soc. Math. France, Paris, 1978, i+185 pp. | MR | Zbl
[18] H. O. Cordes, “On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators”, J. Funct. Anal., 18:2 (1975), 115–131 | DOI | MR | Zbl
[19] I. L. Hwang, “The $L^{2}$-boundedness of pseudodifferential operators”, Trans. Amer. Math. Soc., 302, no. 1, 1987, 55–76 | DOI | MR | Zbl
[20] T. Cazenave, Semilinear Schrödinger equations, Courant Lect. Notes Math., 10, New York Univ., Courant Inst. Math. Sci., New York; Amer. Math. Soc., Providence, RI, 2003, xiv+323 pp. | DOI | MR | Zbl