Logarithmic nature of the long-time asymptotics of solutions of a~Sobolev-type nonlinear equations with cubic nonlinearities
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 7, pp. 1024-1050
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Cauchy problem of the form
$$
\begin{cases}
i\,\partial_{t}(u-\partial_{x}^{2}u)+\partial_{x}^{2}u -a\,\partial_{x}^{4}u=u^{3},  t>0,\ \ 
x\in\mathbb{R},\\
u(0,x) =u_{0}(x), x\in\mathbb{R}, 
\end{cases}
$$ 
is considered for a Sobolev-type nonlinear equation with cubic nonlinearity, where $a>1/5$, $a\neq1$. It is shown that the asymptotic behaviour of the solution is characterized by an additional logarithmic decay in comparison with the corresponding linear case. To find the asymptotics of solutions of the Cauchy problem for a nonlinear Sobolev-type equation, factorization technique is developed. To obtain estimates for derivatives of the defect operators, $\mathbf{L}^{2}$-estimates of pseudodifferential operators are used.
Bibliography: 20 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
nonlinear Sobolev-type equation, critical nonlinearity, factorization technique.
                    
                    
                    
                  
                
                
                @article{SM_2023_214_7_a5,
     author = {P. I. Naumkin},
     title = {Logarithmic nature of the long-time asymptotics of solutions of {a~Sobolev-type} nonlinear equations with cubic nonlinearities},
     journal = {Sbornik. Mathematics},
     pages = {1024--1050},
     publisher = {mathdoc},
     volume = {214},
     number = {7},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_7_a5/}
}
                      
                      
                    TY - JOUR AU - P. I. Naumkin TI - Logarithmic nature of the long-time asymptotics of solutions of a~Sobolev-type nonlinear equations with cubic nonlinearities JO - Sbornik. Mathematics PY - 2023 SP - 1024 EP - 1050 VL - 214 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2023_214_7_a5/ LA - en ID - SM_2023_214_7_a5 ER -
%0 Journal Article %A P. I. Naumkin %T Logarithmic nature of the long-time asymptotics of solutions of a~Sobolev-type nonlinear equations with cubic nonlinearities %J Sbornik. Mathematics %D 2023 %P 1024-1050 %V 214 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2023_214_7_a5/ %G en %F SM_2023_214_7_a5
P. I. Naumkin. Logarithmic nature of the long-time asymptotics of solutions of a~Sobolev-type nonlinear equations with cubic nonlinearities. Sbornik. Mathematics, Tome 214 (2023) no. 7, pp. 1024-1050. http://geodesic.mathdoc.fr/item/SM_2023_214_7_a5/
