Logarithmic nature of the long-time asymptotics of solutions of a~Sobolev-type nonlinear equations with cubic nonlinearities
Sbornik. Mathematics, Tome 214 (2023) no. 7, pp. 1024-1050

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy problem of the form $$ \begin{cases} i\,\partial_{t}(u-\partial_{x}^{2}u)+\partial_{x}^{2}u -a\,\partial_{x}^{4}u=u^{3}, t>0,\ \ x\in\mathbb{R},\\ u(0,x) =u_{0}(x), x\in\mathbb{R}, \end{cases} $$ is considered for a Sobolev-type nonlinear equation with cubic nonlinearity, where $a>1/5$, $a\neq1$. It is shown that the asymptotic behaviour of the solution is characterized by an additional logarithmic decay in comparison with the corresponding linear case. To find the asymptotics of solutions of the Cauchy problem for a nonlinear Sobolev-type equation, factorization technique is developed. To obtain estimates for derivatives of the defect operators, $\mathbf{L}^{2}$-estimates of pseudodifferential operators are used. Bibliography: 20 titles.
Keywords: nonlinear Sobolev-type equation, critical nonlinearity, factorization technique.
@article{SM_2023_214_7_a5,
     author = {P. I. Naumkin},
     title = {Logarithmic nature of the long-time asymptotics of solutions of {a~Sobolev-type} nonlinear equations with cubic nonlinearities},
     journal = {Sbornik. Mathematics},
     pages = {1024--1050},
     publisher = {mathdoc},
     volume = {214},
     number = {7},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_7_a5/}
}
TY  - JOUR
AU  - P. I. Naumkin
TI  - Logarithmic nature of the long-time asymptotics of solutions of a~Sobolev-type nonlinear equations with cubic nonlinearities
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1024
EP  - 1050
VL  - 214
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_7_a5/
LA  - en
ID  - SM_2023_214_7_a5
ER  - 
%0 Journal Article
%A P. I. Naumkin
%T Logarithmic nature of the long-time asymptotics of solutions of a~Sobolev-type nonlinear equations with cubic nonlinearities
%J Sbornik. Mathematics
%D 2023
%P 1024-1050
%V 214
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_7_a5/
%G en
%F SM_2023_214_7_a5
P. I. Naumkin. Logarithmic nature of the long-time asymptotics of solutions of a~Sobolev-type nonlinear equations with cubic nonlinearities. Sbornik. Mathematics, Tome 214 (2023) no. 7, pp. 1024-1050. http://geodesic.mathdoc.fr/item/SM_2023_214_7_a5/