Logarithmic nature of the long-time asymptotics of solutions of a Sobolev-type nonlinear equations with cubic nonlinearities
Sbornik. Mathematics, Tome 214 (2023) no. 7, pp. 1024-1050 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Cauchy problem of the form $$ \begin{cases} i\,\partial_{t}(u-\partial_{x}^{2}u)+\partial_{x}^{2}u -a\,\partial_{x}^{4}u=u^{3}, & t>0,\ \ x\in\mathbb{R},\\ u(0,x) =u_{0}(x),& x\in\mathbb{R}, \end{cases} $$ is considered for a Sobolev-type nonlinear equation with cubic nonlinearity, where $a>1/5$, $a\neq1$. It is shown that the asymptotic behaviour of the solution is characterized by an additional logarithmic decay in comparison with the corresponding linear case. To find the asymptotics of solutions of the Cauchy problem for a nonlinear Sobolev-type equation, factorization technique is developed. To obtain estimates for derivatives of the defect operators, $\mathbf{L}^{2}$-estimates of pseudodifferential operators are used. Bibliography: 20 titles.
Keywords: nonlinear Sobolev-type equation, critical nonlinearity, factorization technique.
@article{SM_2023_214_7_a5,
     author = {P. I. Naumkin},
     title = {Logarithmic nature of the long-time asymptotics of solutions of {a~Sobolev-type} nonlinear equations with cubic nonlinearities},
     journal = {Sbornik. Mathematics},
     pages = {1024--1050},
     year = {2023},
     volume = {214},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_7_a5/}
}
TY  - JOUR
AU  - P. I. Naumkin
TI  - Logarithmic nature of the long-time asymptotics of solutions of a Sobolev-type nonlinear equations with cubic nonlinearities
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 1024
EP  - 1050
VL  - 214
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_7_a5/
LA  - en
ID  - SM_2023_214_7_a5
ER  - 
%0 Journal Article
%A P. I. Naumkin
%T Logarithmic nature of the long-time asymptotics of solutions of a Sobolev-type nonlinear equations with cubic nonlinearities
%J Sbornik. Mathematics
%D 2023
%P 1024-1050
%V 214
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2023_214_7_a5/
%G en
%F SM_2023_214_7_a5
P. I. Naumkin. Logarithmic nature of the long-time asymptotics of solutions of a Sobolev-type nonlinear equations with cubic nonlinearities. Sbornik. Mathematics, Tome 214 (2023) no. 7, pp. 1024-1050. http://geodesic.mathdoc.fr/item/SM_2023_214_7_a5/

[1] S. L. Sobolev, “On a new problem in mathematical physics”, Izv. Akad. Nauk SSSR. Ser. Mat., 18:1 (1954), 3–50 (Russian) | MR | Zbl

[2] A. G. Sveshnikov, A. B. Al'shin, M. O. Korpusov and Yu. D. Pletner, Linear and nonlinear equations of Sobolev type, Fizmatlit, Moscow, 2007, 734 pp. (Russian) | Zbl

[3] A. B. Al'shin, M. O. Korpusov and A. G. Sveshnikov, Blow-up in nonlinear Sobolev type equations, De Gruyter Ser. Nonlinear Anal. Appl., 15, Walter de Gruyter Co., Berlin, 2011, xii+648 pp. | DOI | MR | Zbl

[4] M. O. Korpusov, A. V. Ovchinnikov, A. G. Sveshnikov and E. V. Yushkov, Blow-up in nonlinear equations of mathematical physics. Theory and methods, De Gruyter Ser. Nonlinear Anal. Appl., 27, De Gruyter, Berlin, 2018, xviii+326 pp. | DOI | MR | Zbl

[5] E. I. Kaikina, P. I. Naumkin and I. A. Shishmarev, “The Cauchy problem for an equation of Sobolev type with power non-linearity”, Izv. Math., 69:1 (2005), 59–111 | DOI | MR | Zbl

[6] E. I. Kaikina, P. I. Naumkin and I. A. Shishmarev, “Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations”, Russian Math. Surveys, 64:3 (2009), 399–468 | DOI | MR | Zbl

[7] N. Hayashi and P. I. Naumkin, “Nongauge invariant cubic nonlinear Schrödinger equations”, Pac. J. Appl. Math. Yearbook, 1 (2012), 1–16

[8] P. I. Naumkin and I. Sánchez-Suárez, “On the critical nongauge invariant nonlinear Schrödinger equation”, Discrete Contin. Dyn. Syst., 30:3 (2011), 807–834 | DOI | MR | Zbl

[9] N. Hayashi and P. I. Naumkin, “Global existence for the cubic nonlinear Schrodinger equation in low order Sobolev spaces”, Differential Integral Equations, 24:9–10 (2011), 801–828 | DOI | MR | Zbl

[10] N. Hayashi and T. Ozawa, “Scattering theory in the weighted $L^{2}(\mathbb R^{n})$ spaces for some Schrödinger equations”, Ann. Inst. H. Poincaré Phys. Théor., 48:1 (1988), 17–37 | MR | Zbl

[11] N. Hayashi and P. I. Naumkin, “The initial value problem for the cubic nonlinear Klein-Gordon equation”, Z. Angew. Math. Phys., 59:6 (2008), 1002–1028 | DOI | MR | Zbl

[12] N. Hayashi and P. I. Naumkin, “Factorization technique for the modified Korteweg-de Vries equation”, SUT J. Math., 52:1 (2016), 49–95 | DOI | MR | Zbl

[13] P. I. Naumkin, “Asymptotics of solutions of a modified Whitham equation with surface tension”, Izv. Math., 83:2 (2019), 361–390 | DOI | MR | Zbl

[14] P. I. Naumkin, “Time decay estimates for solutions of the Cauchy problem for the modified Kawahara equation”, Sb. Math., 210:5 (2019), 693–730 | DOI | MR | Zbl

[15] M. V. Fedoryuk, Asymptotics: integrals and series, Nauka, Moscow, 1987, 544 pp. (Russian) | MR | Zbl

[16] A. P. Calderón and R. Vaillancourt, “A class of bounded pseudo-differential operators”, Proc. Nat. Acad. Sci. U.S.A., 69:5 (1972), 1185–1187 | DOI | MR | Zbl

[17] R. R. Coifman and Y. Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque, 57, Soc. Math. France, Paris, 1978, i+185 pp. | MR | Zbl

[18] H. O. Cordes, “On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators”, J. Funct. Anal., 18:2 (1975), 115–131 | DOI | MR | Zbl

[19] I. L. Hwang, “The $L^{2}$-boundedness of pseudodifferential operators”, Trans. Amer. Math. Soc., 302, no. 1, 1987, 55–76 | DOI | MR | Zbl

[20] T. Cazenave, Semilinear Schrödinger equations, Courant Lect. Notes Math., 10, New York Univ., Courant Inst. Math. Sci., New York; Amer. Math. Soc., Providence, RI, 2003, xiv+323 pp. | DOI | MR | Zbl