Spectral gaps in a~thin-walled infinite rectangular Dirichlet box with a~periodic family of cross walls
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 7, pp. 982-1023
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Dirichlet spectral problem for the Laplace operator is considered in an infinite thin-walled rectangular box with a periodic family of cross walls whose thickness is proportional to that of the walls. Using asymptotic analysis it is shown that spectral gaps open up 
in the case of ‘thin’ or ‘sufficiently thick’ cross-walls whose relative thickness is bounded above or below by certain characteristics
of model Dirichlet problems in $\mathsf L$- and $\mathsf T$-shaped domains in the plane and in a union of two pairwise orthogonal
halves of space layers and a quarter of a space layer. A number of open questions are stated; in particular, because of the lack of information on threshold resonances in the three-dimensional model problem, the structure of the spectrum for cross walls of any intermediate thickness remains unknown.
Bibliography: 35 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Dirichlet spectral problem for the Laplace operator, thin-walled infinite rectangular box with periodic cross walls, essential and discrete spectra, asymptotics of eigenvalues, spectral gaps.
                    
                    
                    
                  
                
                
                @article{SM_2023_214_7_a4,
     author = {S. A. Nazarov},
     title = {Spectral gaps in a~thin-walled infinite rectangular {Dirichlet} box with a~periodic family of cross walls},
     journal = {Sbornik. Mathematics},
     pages = {982--1023},
     publisher = {mathdoc},
     volume = {214},
     number = {7},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_7_a4/}
}
                      
                      
                    TY - JOUR AU - S. A. Nazarov TI - Spectral gaps in a~thin-walled infinite rectangular Dirichlet box with a~periodic family of cross walls JO - Sbornik. Mathematics PY - 2023 SP - 982 EP - 1023 VL - 214 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2023_214_7_a4/ LA - en ID - SM_2023_214_7_a4 ER -
S. A. Nazarov. Spectral gaps in a~thin-walled infinite rectangular Dirichlet box with a~periodic family of cross walls. Sbornik. Mathematics, Tome 214 (2023) no. 7, pp. 982-1023. http://geodesic.mathdoc.fr/item/SM_2023_214_7_a4/
