@article{SM_2023_214_7_a4,
author = {S. A. Nazarov},
title = {Spectral gaps in a~thin-walled infinite rectangular {Dirichlet} box with a~periodic family of cross walls},
journal = {Sbornik. Mathematics},
pages = {982--1023},
year = {2023},
volume = {214},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_7_a4/}
}
S. A. Nazarov. Spectral gaps in a thin-walled infinite rectangular Dirichlet box with a periodic family of cross walls. Sbornik. Mathematics, Tome 214 (2023) no. 7, pp. 982-1023. http://geodesic.mathdoc.fr/item/SM_2023_214_7_a4/
[1] M. Reed and B. Simon, Methods of modern mathematical physics, v. III, Scattering theory, Academic Press [Harcourt Brace Jovanovich, Publishers], New York–London, 1979, xv+463 pp. | MR | Zbl
[2] P. A. Kuchment, “Floquet theory for partial differential equations”, Russian Math. Surveys, 37:4 (1982), 1–60 | DOI | MR | Zbl
[3] M. M. Skriganov, “Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators”, Proc. Steklov Inst. Math., 171 (1987), 1–121 | MR | Zbl
[4] S. A. Nazarov and B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Exp. Math., 13, Walter de Gruyter Co., Berlin, 1994, viii+525 pp. | DOI | MR | Zbl
[5] P. Kuchment, Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birchäuser Verlag, Basel, 1993, xiv+350 pp. | DOI | MR | Zbl
[6] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer-Verlag, New York, 1985, xxx+322 pp. | DOI | MR | Zbl
[7] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, v. 1, Travaux et Recherches Mathématiques, 17, Dunod, Paris, 1968, xx+372 pp. | MR | Zbl
[8] M. S. Birman and M. Z. Solomyak, Spectral theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), 5, D. Reidel Publishing Co., Dordrecht, 1987, xv+301 pp. | DOI | MR | Zbl
[9] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag New York, Inc., New York, 1966, xix+592 pp. | DOI | MR | Zbl
[10] W. G. Mazja, S. A. Nasarow and B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, v. 1, Math. Lehrbucher und Monogr., 82, Akademie-Verlag, Berlin, 1991, 432 pp. ; English transl., V. Maz'ya, S. Nazarov and B. Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, Oper. Theory Adv. Appl., 111, Birkhäuser, Basel, 2000, xxiv+435 pp. | MR | DOI | MR | Zbl
[11] M. Dauge, Y. Lafranche and T. Ourmières-Bonafos, “Dirichlet spectrum of the Fichera layer”, Integral Equations Operator Theory, 90:5 (2018), 60, 41 pp. | DOI | MR | Zbl
[12] F. L. Bakharev and A. I. Nazarov, “Existence of the discrete spectrum in the Fichera layers and crosses of arbitrary dimension”, J. Funct. Anal., 281:4 (2021), 109071, 19 pp. | DOI | MR | Zbl
[13] G. Fichera, “Asymptotic behaviour of the electric field and density of the electric charge in the neighbourhood of singular points of a conducting surface”, Russian Math. Surveys, 30:3 (1975), 107–127 | DOI | MR | Zbl
[14] P. Exner, P. Šeba and P. Štóviček, “On existence of a bound state in an $L$-shaped waveguide”, Czechoslovak J. Phys. B, 39:11 (1989), 1181–1191 | DOI
[15] I. V. Kamotskii and S. A. Nazarov, “On eigenfunctions localized in a neighborhood of the lateral surface of a thin domain”, J. Math. Sci. (N.Y.), 101:2 (2000), 2941–2974 | DOI | MR | Zbl
[16] S. A. Nazarov, “Discrete spectrum of cranked, branching, and periodic waveguides”, St. Petersburg Math. J., 23:2 (2012), 351–379 | DOI | MR | Zbl
[17] S. A. Nazarov and A. V. Shanin, “Trapped modes in angular joints of 2D waveguides”, Appl. Anal., 93:3 (2014), 572–582 | DOI | MR | Zbl
[18] S. A. Nazarov, “Localized waves in $T$-shaped waveguide”, Acoustical Phys., 56:6 (2010), 1004–1015 | DOI
[19] S. A. Nazarov, “On the spectrum of the Laplace operator on the infinite Dirichlet ladder”, St. Petersburg Math. J., 23:6 (2012), 1023–1045 | DOI | MR | Zbl
[20] S. Molchanov and B. Vainberg, “Scattering solutions in networks of thin fibers: small diameter asymptotics”, Comm. Math. Phys., 273:2 (2007), 533–559 | DOI | MR | Zbl
[21] D. Grieser, “Spectra of graph neighborhoods and scattering”, Proc. Lond. Math. Soc. (3), 97:3 (2008), 718–752 | DOI | MR | Zbl
[22] S. A. Nazarov, “Threshold resonances and virtual levels in the spectrum of cylindrical and periodic waveguides”, Izv. Math., 84:6 (2020), 1105–1160 | DOI | MR | Zbl
[23] K. Pankrashkin, “Eigenvalue inequalities and absence of threshold resonances for waveguide junctions”, J. Math. Anal. Appl., 449:1 (2017), 907–925 | DOI | MR | Zbl
[24] F. L. Bakharev and S. A. Nazarov, “Criteria for the absence and existence of bounded solutions at the threshold frequency in a junction of quantum waveguides”, St. Petersburg Math. J., 32:6 (2021), 955–973 | DOI | MR | Zbl
[25] S. A. Nazarov, “Bounded solutions in a $\mathrm{T}$-shaped waveguide and the spectral properties of the Dirichlet ladder”, Comput. Math. Math. Phys., 54:8 (2014), 1261–1279 | DOI | MR | Zbl
[26] M. I. Višik (Vishik) and L. A. Lyusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter”, Amer. Math. Soc. Transl. Ser. 2, 20, Amer. Math. Soc., Providence, RI, 1962, 239–364 | DOI | MR | MR | Zbl | Zbl
[27] S. A. Nazarov, “The Navier-Stokes problem in thin or long tubes with periodically varying cross-sections”, ZAMM Z. Angew. Math. Mech., 80:9 (2000), 591–612 | 3.0.CO;2-Q class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[28] L. Bers, F. John and M. Schechter, Partial differential equations (Boulder, CO 1957), Lectures in Appl. Math., III, Interscience Publishers John Wiley Sons, Inc., New York–London–Sydney, 1964, xiii+343 pp. | MR | MR | Zbl | Zbl
[29] I. V. Kamotskii and S. A. Nazarov, “Exponentially decreasing solutions of diffraction problems on a rigid periodic boundary”, Math. Notes, 73:1 (2003), 129–131 | DOI | MR | Zbl
[30] F. L. Bakharev, S. G. Matveenko and S. A. Nazarov, “The discrete spectrum of cross-shaped waveguides”, St. Petersburg Math. J., 28:2 (2017), 171–180 | DOI | MR | Zbl
[31] V. G. Maz'ya and B. A. Plamenevskij, “Estimates in $L_p$ and in Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary”, Amer. Math. Soc. Transl. Ser. 2, 123, Amer. Math. Soc., Providence, RI, 1984, 1–56 | DOI | MR | Zbl
[32] V. A. Kondrat'ev, “Boundary problems for elliptic equations in domains with conical or angular points”, Trans. Moscow Math. Soc., 16 (1967), 227–313 | MR | Zbl
[33] V. A. Kozlov, V. G. Maz'ya and J. Rossmann, Elliptic boundary value problems in domains with point singularities, Math. Surveys Monogr., 52, Amer. Math. Soc., Providence, RI, 1997, x+414 pp. | DOI | MR | Zbl
[34] S. A. Nazarov, “Asymptotic of the solution of a boundary value problem in a thin cylinder with nonsmooth lateral surface”, Russian Acad. Sci. Izv. Math., 42:1 (1994), 183–217 | DOI | MR | Zbl
[35] G. Kirchhoff, “Ueber das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes”, J. Reine Angew. Math., 1859:56 (1859), 285–313 | DOI | MR | Zbl