Mots-clés : volume polynomial
@article{SM_2023_214_7_a3,
author = {S. N. Mikhalev},
title = {A~metric description of flexible octahedra},
journal = {Sbornik. Mathematics},
pages = {952--981},
year = {2023},
volume = {214},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_7_a3/}
}
S. N. Mikhalev. A metric description of flexible octahedra. Sbornik. Mathematics, Tome 214 (2023) no. 7, pp. 952-981. http://geodesic.mathdoc.fr/item/SM_2023_214_7_a3/
[1] R. Bricard, “Mémoire sur la théorie de l'octaèdre articulé”, J. Math. Pures Appl. (5), 3 (1897), 113–148 | Zbl
[2] G. T. Bennett, “Deformable octahedra”, Proc. London Math. Soc. (2), 10:1 (1912), 309–343 | DOI | MR | Zbl
[3] H. Lebesgue, “Octaèdres articulés de Bricard”, Enseign. Math. (2), 13:3 (1967), 175–185 | MR | Zbl
[4] H. Stachel, “Combinatorics of Bricard's octahedra”, Proceedings of the 10th international conference on geometry and graphics (Kiev 2002), v. 1, 2002, 8–12
[5] M. Gallet, G. Grasegger, J. Legerský and J. Schicho, “Combinatorics of Bricard's octahedra”, C. R. Math. Acad. Sci. Paris, 359:1 (2021), 7–38 | DOI | MR | Zbl
[6] A. A. Gaifullin, “Flexible cross-polytopes in spaces of constant curvature”, Proc. Steklov Inst. Math., 286 (2014), 77–113 | DOI | MR | Zbl
[7] I. Kh. Sabitov, “The volume of a polyhedron as a function of its metric”, Fundam. Prikl. Mat., 2:4 (1996), 1235–1246 (Russian) | MR | Zbl
[8] I. Kh. Sabitov, “A generalized Heron-Tartaglia formula and some of its consequences”, Sb. Math., 189:10 (1998), 1533–1561 | DOI | MR | Zbl
[9] I. Kh. Sabitov, “The volume as a metric invariant of polyhedra”, Discrete Comput. Geom., 20:4 (1998), 405–425 | DOI | MR | Zbl
[10] I. Kh. Sabitov, “Algebraic methods for solution of polyhedra”, Russian Math. Surveys, 66:3 (2011), 445–505 | DOI | MR | Zbl
[11] S. N. Mikhalev, “A method for solving the problem of isometric realization of developments”, J. Math. Sci. (N.Y.), 149:1 (2008), 971–995 | DOI | MR | Zbl
[12] A. V. Astrelin and I. Kh. Sabitov, “A minimal-degree polynomial for determining the volume of an octahedron from its metric”, Russian Math. Surveys, 50:5 (1995), 1085–1087 | DOI | MR | Zbl
[13] R. V. Galiulin, S. N. Mikhalev and I. Kh. Sabitov, “Some applications of the formula for the volume of an octahedron”, Math. Notes, 76:1 (2004), 25–40 | DOI | MR | Zbl
[14] H. Gluck, “Almost all simply connected closed surfaces are rigid”, Geometric topology (Park City, UT 1974), Lecture Notes in Math., 438, Springer, Berlin, 1975, 225–239 | DOI | MR | Zbl
[15] M. Berger, Géométrie, v. 1–3, CEDIC, Paris; Nathan Information, Paris, 1977, 192 pp., 214 pp., 184 pp. | MR | MR | MR | Zbl
[16] C. D'Andrea and M. Sombra, “The Cayley-Menger determinant is irreducible for $n\geqslant3$”, Siberian Math. J., 46:1 (2005), 71–76 | DOI | MR | Zbl
[17] C. N. Mikhalev, “Isometric implementations of Bricard's octahedra of type 1 and 2 with given volume”, Fundam. Prikl. Mat., 8:3 (2002), 755–768 | MR | Zbl