A metric description of flexible octahedra
Sbornik. Mathematics, Tome 214 (2023) no. 7, pp. 952-981 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new description of flexible Bricard octahedra is obtained using conditions in terms of edge lengths. It is suitable for the study of a number of problems in the metric geometry of octahedra and, in particular, for searching for a proof of the conjecture of Sabitov on the vanishing of all but the leading coefficients of the polynomial for the volume of a type $3$ octahedron. Bibliography: 17 titles.
Keywords: flexible polyhedra, Bricard octahedra, solution of polyhedra.
Mots-clés : volume polynomial
@article{SM_2023_214_7_a3,
     author = {S. N. Mikhalev},
     title = {A~metric description of flexible octahedra},
     journal = {Sbornik. Mathematics},
     pages = {952--981},
     year = {2023},
     volume = {214},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_7_a3/}
}
TY  - JOUR
AU  - S. N. Mikhalev
TI  - A metric description of flexible octahedra
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 952
EP  - 981
VL  - 214
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_7_a3/
LA  - en
ID  - SM_2023_214_7_a3
ER  - 
%0 Journal Article
%A S. N. Mikhalev
%T A metric description of flexible octahedra
%J Sbornik. Mathematics
%D 2023
%P 952-981
%V 214
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2023_214_7_a3/
%G en
%F SM_2023_214_7_a3
S. N. Mikhalev. A metric description of flexible octahedra. Sbornik. Mathematics, Tome 214 (2023) no. 7, pp. 952-981. http://geodesic.mathdoc.fr/item/SM_2023_214_7_a3/

[1] R. Bricard, “Mémoire sur la théorie de l'octaèdre articulé”, J. Math. Pures Appl. (5), 3 (1897), 113–148 | Zbl

[2] G. T. Bennett, “Deformable octahedra”, Proc. London Math. Soc. (2), 10:1 (1912), 309–343 | DOI | MR | Zbl

[3] H. Lebesgue, “Octaèdres articulés de Bricard”, Enseign. Math. (2), 13:3 (1967), 175–185 | MR | Zbl

[4] H. Stachel, “Combinatorics of Bricard's octahedra”, Proceedings of the 10th international conference on geometry and graphics (Kiev 2002), v. 1, 2002, 8–12

[5] M. Gallet, G. Grasegger, J. Legerský and J. Schicho, “Combinatorics of Bricard's octahedra”, C. R. Math. Acad. Sci. Paris, 359:1 (2021), 7–38 | DOI | MR | Zbl

[6] A. A. Gaifullin, “Flexible cross-polytopes in spaces of constant curvature”, Proc. Steklov Inst. Math., 286 (2014), 77–113 | DOI | MR | Zbl

[7] I. Kh. Sabitov, “The volume of a polyhedron as a function of its metric”, Fundam. Prikl. Mat., 2:4 (1996), 1235–1246 (Russian) | MR | Zbl

[8] I. Kh. Sabitov, “A generalized Heron-Tartaglia formula and some of its consequences”, Sb. Math., 189:10 (1998), 1533–1561 | DOI | MR | Zbl

[9] I. Kh. Sabitov, “The volume as a metric invariant of polyhedra”, Discrete Comput. Geom., 20:4 (1998), 405–425 | DOI | MR | Zbl

[10] I. Kh. Sabitov, “Algebraic methods for solution of polyhedra”, Russian Math. Surveys, 66:3 (2011), 445–505 | DOI | MR | Zbl

[11] S. N. Mikhalev, “A method for solving the problem of isometric realization of developments”, J. Math. Sci. (N.Y.), 149:1 (2008), 971–995 | DOI | MR | Zbl

[12] A. V. Astrelin and I. Kh. Sabitov, “A minimal-degree polynomial for determining the volume of an octahedron from its metric”, Russian Math. Surveys, 50:5 (1995), 1085–1087 | DOI | MR | Zbl

[13] R. V. Galiulin, S. N. Mikhalev and I. Kh. Sabitov, “Some applications of the formula for the volume of an octahedron”, Math. Notes, 76:1 (2004), 25–40 | DOI | MR | Zbl

[14] H. Gluck, “Almost all simply connected closed surfaces are rigid”, Geometric topology (Park City, UT 1974), Lecture Notes in Math., 438, Springer, Berlin, 1975, 225–239 | DOI | MR | Zbl

[15] M. Berger, Géométrie, v. 1–3, CEDIC, Paris; Nathan Information, Paris, 1977, 192 pp., 214 pp., 184 pp. | MR | MR | MR | Zbl

[16] C. D'Andrea and M. Sombra, “The Cayley-Menger determinant is irreducible for $n\geqslant3$”, Siberian Math. J., 46:1 (2005), 71–76 | DOI | MR | Zbl

[17] C. N. Mikhalev, “Isometric implementations of Bricard's octahedra of type 1 and 2 with given volume”, Fundam. Prikl. Mat., 8:3 (2002), 755–768 | MR | Zbl