A~metric description of flexible octahedra
Sbornik. Mathematics, Tome 214 (2023) no. 7, pp. 952-981
Voir la notice de l'article provenant de la source Math-Net.Ru
A new description of flexible Bricard octahedra is obtained using conditions in terms of edge lengths. It is suitable for the study of a number of problems in the metric geometry of octahedra and, in particular, for searching for a proof of the conjecture of Sabitov on the vanishing of all but the leading coefficients of the polynomial for the volume of a type $3$ octahedron.
Bibliography: 17 titles.
Keywords:
flexible polyhedra, Bricard octahedra, solution of polyhedra.
Mots-clés : volume polynomial
Mots-clés : volume polynomial
@article{SM_2023_214_7_a3,
author = {S. N. Mikhalev},
title = {A~metric description of flexible octahedra},
journal = {Sbornik. Mathematics},
pages = {952--981},
publisher = {mathdoc},
volume = {214},
number = {7},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_7_a3/}
}
S. N. Mikhalev. A~metric description of flexible octahedra. Sbornik. Mathematics, Tome 214 (2023) no. 7, pp. 952-981. http://geodesic.mathdoc.fr/item/SM_2023_214_7_a3/