A~metric description of flexible octahedra
Sbornik. Mathematics, Tome 214 (2023) no. 7, pp. 952-981

Voir la notice de l'article provenant de la source Math-Net.Ru

A new description of flexible Bricard octahedra is obtained using conditions in terms of edge lengths. It is suitable for the study of a number of problems in the metric geometry of octahedra and, in particular, for searching for a proof of the conjecture of Sabitov on the vanishing of all but the leading coefficients of the polynomial for the volume of a type $3$ octahedron. Bibliography: 17 titles.
Keywords: flexible polyhedra, Bricard octahedra, solution of polyhedra.
Mots-clés : volume polynomial
@article{SM_2023_214_7_a3,
     author = {S. N. Mikhalev},
     title = {A~metric description of flexible octahedra},
     journal = {Sbornik. Mathematics},
     pages = {952--981},
     publisher = {mathdoc},
     volume = {214},
     number = {7},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_7_a3/}
}
TY  - JOUR
AU  - S. N. Mikhalev
TI  - A~metric description of flexible octahedra
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 952
EP  - 981
VL  - 214
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_7_a3/
LA  - en
ID  - SM_2023_214_7_a3
ER  - 
%0 Journal Article
%A S. N. Mikhalev
%T A~metric description of flexible octahedra
%J Sbornik. Mathematics
%D 2023
%P 952-981
%V 214
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_7_a3/
%G en
%F SM_2023_214_7_a3
S. N. Mikhalev. A~metric description of flexible octahedra. Sbornik. Mathematics, Tome 214 (2023) no. 7, pp. 952-981. http://geodesic.mathdoc.fr/item/SM_2023_214_7_a3/