Mots-clés : $4$-term relations
@article{SM_2023_214_7_a2,
author = {P. E. Zakorko},
title = {Values of the $\mathfrak{sl}_2$ weight system at chord~diagrams with complete intersection graphs},
journal = {Sbornik. Mathematics},
pages = {934--951},
year = {2023},
volume = {214},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_7_a2/}
}
P. E. Zakorko. Values of the $\mathfrak{sl}_2$ weight system at chord diagrams with complete intersection graphs. Sbornik. Mathematics, Tome 214 (2023) no. 7, pp. 934-951. http://geodesic.mathdoc.fr/item/SM_2023_214_7_a2/
[1] V. A. Vassiliev, “Cohomology of knot spaces”, Theory of singularities and its applications, Adv. Soviet Math., 1, Amer. Math. Soc., Providence, RI, 1990, 23–69 | DOI | MR | Zbl
[2] M. Kontsevich, “Vassiliev's knot invariants”, I. M. Gel'fand seminar, Part 2, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 137–150 | DOI | MR | Zbl
[3] D. Bar-Natan, “On the Vassiliev knot invariants”, Topology, 34:2 (1995), 423–472 | DOI | MR | Zbl
[4] S. V. Chmutov and S. K. Lando, “Mutant knots and intersection graphs”, Algebr. Geom. Topol., 7:3 (2007), 1579–1598 | DOI | MR | Zbl
[5] E. Krasilnikov, “An extension of the $\mathfrak{sl}_2$ weight system to graphs with $n\le 8$ vertices”, Arnold Math. J., 7:4 (2021), 609–618 | DOI | MR | Zbl
[6] P. A. Filippova (Zinova), “Values of the $\mathfrak{sl}_2$ weight system on a family of graphs that are not the intersection graphs of chord diagrams”, Sb. Math., 213:2 (2022), 235–267 | DOI | MR | Zbl
[7] S. V. Chmutov and A. N. Varchenko, “Remarks on the Vassiliev knot invariants coming from $\mathfrak{sl}_2$”, Topology, 36:1 (1997), 153–178 | DOI | MR | Zbl
[8] A. Bigeni, “A generalization of the Kreweras triangle through the universal $\mathfrak{sl}_2$ weight system”, J. Combin. Theory Ser. A, 161 (2019), 309–326 | DOI | MR | Zbl
[9] S. Chmutov, S. Duzhin and J. Mostovoy, Introduction to Vassiliev knot invariants, Cambridge Univ. Press, Cambridge, 2012, xvi+504 pp. | DOI | MR | Zbl
[10] P. Flajolet, “Combinatorial aspects of continued fractions”, Discrete Math., 32:2 (1980), 125–161 | DOI | MR | Zbl