@article{SM_2023_214_7_a1,
author = {M. R. Gabdullin and S. V. Konyagin and V. V. Iudelevich},
title = {Karatsuba's divisor problem and related questions},
journal = {Sbornik. Mathematics},
pages = {919--933},
year = {2023},
volume = {214},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_7_a1/}
}
M. R. Gabdullin; S. V. Konyagin; V. V. Iudelevich. Karatsuba's divisor problem and related questions. Sbornik. Mathematics, Tome 214 (2023) no. 7, pp. 919-933. http://geodesic.mathdoc.fr/item/SM_2023_214_7_a1/
[1] E. C. Titchmarsh, “A divisor problem”, Rend. Circ. Mat. Palermo, 54 (1930), 414–429 | DOI | Zbl
[2] Yu. V. Linnik, “New versions and new uses of the dispersion method in binary additive problems”, Soviet Math. Dokl., 2 (1961), 468–471 | MR | Zbl
[3] H. Halberstam, “Footnote to the Titchmarsh-Linnik divisor problem”, Proc. Amer. Math. Soc., 18 (1967), 187–188 | DOI | MR | Zbl
[4] E. Bombieri, J. B. Friedlander and H. Iwaniec, “Primes in arithmetic progressions to large moduli”, Acta Math., 156:3-4 (1986), 203–251 | DOI | MR | Zbl
[5] S. Ramanujan, “Some formulae in the analytic theory of numbers”, Messenger Math., 45 (1916), 81–84 | MR | Zbl
[6] V. V. Iudelevich, “On the Karatsuba divisor problem”, Izv. Math., 86:5 (2022), 992–1019 | DOI | MR
[7] P. Pollack, “Nonnegative multiplicative functions on sifted sets, and the square roots of $-1$ modulo shifted primes”, Glasg. Math. J., 62:1 (2020), 187–199 | DOI | MR | Zbl
[8] M. B. Barban and P. P. Vekhov, “Summation of multiplicative functions of polynomials”, Math. Notes, 5:6 (1969), 400–407 | DOI | MR | Zbl
[9] K. Ford and H. Halberstam, “The Brun-Hooley sieve”, J. Number Theory, 81:2 (2000), 335–350 | DOI | MR | Zbl
[10] J. B. Rosser and L. Schoenfeld, “Approximate formulas for some functions of prime numbers”, Illinois J. Math., 6:1 (1962), 64–94 | DOI | MR | Zbl
[11] S. Uchiyama, “On some products involving primes”, Proc. Amer. Math. Soc., 28:2 (1971), 629–630 | DOI | MR | Zbl
[12] G. Tenenbaum, “Note sur les lois locales conjointes de la fonction nombre de facteurs premiers”, J. Number Theory, 188 (2018), 88–95 | DOI | MR | Zbl
[13] K. Prachar, Primzahlverteilung, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1957, x+415 pp. | MR | Zbl
[14] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, 2 Bände, B. G. Teubner, Leipzig–Berlin, 1909, x+564 pp., ix+567–961 pp. | MR | Zbl