Karatsuba's divisor problem and related questions
Sbornik. Mathematics, Tome 214 (2023) no. 7, pp. 919-933

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that $$ \sum_{p \leq x} \frac{1}{\tau(p-1)} \asymp \frac{x}{(\log x)^{3/2}} \quad\text{and}\quad \sum_{n \leq x} \frac{1}{\tau(n^2+1)} \asymp \frac{x}{(\log x)^{1/2}}, $$ where $\tau(n)=\sum_{d\mid n}1$ is the number of divisors of $n$, and the first sum is taken over prime numbers. Bibliography: 14 titles.
Keywords: divisor function, sums of values of functions, shifted primes and squares.
@article{SM_2023_214_7_a1,
     author = {M. R. Gabdullin and S. V. Konyagin and V. V. Iudelevich},
     title = {Karatsuba's divisor problem and related questions},
     journal = {Sbornik. Mathematics},
     pages = {919--933},
     publisher = {mathdoc},
     volume = {214},
     number = {7},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_7_a1/}
}
TY  - JOUR
AU  - M. R. Gabdullin
AU  - S. V. Konyagin
AU  - V. V. Iudelevich
TI  - Karatsuba's divisor problem and related questions
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 919
EP  - 933
VL  - 214
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_7_a1/
LA  - en
ID  - SM_2023_214_7_a1
ER  - 
%0 Journal Article
%A M. R. Gabdullin
%A S. V. Konyagin
%A V. V. Iudelevich
%T Karatsuba's divisor problem and related questions
%J Sbornik. Mathematics
%D 2023
%P 919-933
%V 214
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_7_a1/
%G en
%F SM_2023_214_7_a1
M. R. Gabdullin; S. V. Konyagin; V. V. Iudelevich. Karatsuba's divisor problem and related questions. Sbornik. Mathematics, Tome 214 (2023) no. 7, pp. 919-933. http://geodesic.mathdoc.fr/item/SM_2023_214_7_a1/