Karatsuba's divisor problem and related questions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 7, pp. 919-933
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove that
$$
\sum_{p \leq x} \frac{1}{\tau(p-1)} \asymp \frac{x}{(\log x)^{3/2}} \quad\text{and}\quad
\sum_{n \leq x} \frac{1}{\tau(n^2+1)} \asymp \frac{x}{(\log x)^{1/2}},
$$
where $\tau(n)=\sum_{d\mid n}1$ is the number of divisors of $n$, and the first sum is taken over prime numbers.
Bibliography: 14 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
divisor function, sums of values of functions, shifted primes and squares.
                    
                    
                    
                  
                
                
                @article{SM_2023_214_7_a1,
     author = {M. R. Gabdullin and S. V. Konyagin and V. V. Iudelevich},
     title = {Karatsuba's divisor problem and related questions},
     journal = {Sbornik. Mathematics},
     pages = {919--933},
     publisher = {mathdoc},
     volume = {214},
     number = {7},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_7_a1/}
}
                      
                      
                    TY - JOUR AU - M. R. Gabdullin AU - S. V. Konyagin AU - V. V. Iudelevich TI - Karatsuba's divisor problem and related questions JO - Sbornik. Mathematics PY - 2023 SP - 919 EP - 933 VL - 214 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2023_214_7_a1/ LA - en ID - SM_2023_214_7_a1 ER -
M. R. Gabdullin; S. V. Konyagin; V. V. Iudelevich. Karatsuba's divisor problem and related questions. Sbornik. Mathematics, Tome 214 (2023) no. 7, pp. 919-933. http://geodesic.mathdoc.fr/item/SM_2023_214_7_a1/
