Geodesic flow on an intersection of several confocal quadrics in $\mathbb{R}^n$
Sbornik. Mathematics, Tome 214 (2023) no. 7, pp. 897-918 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By the Jacobi-Chasles theorem, for each geodesic on an $n$-axial ellipsoid in $n$-dimensional Euclidean space, apart from it there exist also $n-2$ quadrics confocal with it that are tangent to all the tangent lines of this geodesic. It is shown that this result also holds for the geodesic flow on the intersection of several nondegenerate confocal quadrics. As in the case of the Jacobi-Chasles theorem, this fact ensures the integrability of the corresponding geodesic flow. For each compact intersection of several nondegenerate confocal quadrics its homeomorphism class is determined, and it turns out that such an intersection is always homeomorphic to a product of several spheres. Also, a sufficient condition for a potential is presented which ensures that the addition of this potential preserved the integrability of the corresponding dynamical system on the intersection of an arbitrary number of confocal quadrics. Bibliography: 16 titles.
Keywords: geodesic flow, integrable system, elliptic coordinates, Jacobi-Chasles theorem.
Mots-clés : confocal quadrics
@article{SM_2023_214_7_a0,
     author = {G. V. Belozerov},
     title = {Geodesic flow on an intersection of several confocal quadrics in~$\mathbb{R}^n$},
     journal = {Sbornik. Mathematics},
     pages = {897--918},
     year = {2023},
     volume = {214},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_7_a0/}
}
TY  - JOUR
AU  - G. V. Belozerov
TI  - Geodesic flow on an intersection of several confocal quadrics in $\mathbb{R}^n$
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 897
EP  - 918
VL  - 214
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_7_a0/
LA  - en
ID  - SM_2023_214_7_a0
ER  - 
%0 Journal Article
%A G. V. Belozerov
%T Geodesic flow on an intersection of several confocal quadrics in $\mathbb{R}^n$
%J Sbornik. Mathematics
%D 2023
%P 897-918
%V 214
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2023_214_7_a0/
%G en
%F SM_2023_214_7_a0
G. V. Belozerov. Geodesic flow on an intersection of several confocal quadrics in $\mathbb{R}^n$. Sbornik. Mathematics, Tome 214 (2023) no. 7, pp. 897-918. http://geodesic.mathdoc.fr/item/SM_2023_214_7_a0/

[1] C. G. J. Jacobi, “Note von der geodätischen Linie auf einem Ellipsoid und den verschiedenen Anwendungen einer merkwürdigen analytischen Substitution”, J. Reine Angew. Math., 1839:19 (1839), 309–313 | DOI | MR | Zbl

[2] C. G. J. Jacobi, Vorlesungen über Dynamik, Gesammelte Werke, Supplementband, 2. rev. Ausg., G. Reimer, Berlin, 1884, viii+300 pp. | DOI | MR | Zbl

[3] M. Chasles, “Sur les lignes géodésiques et les lignes de courbure des surfaces du second degré”, J. Math. Pures Appl., 11 (1846), 5–20

[4] V. I. Arnold, Mathematical methods of classical mechanics, 3d ed., Nauka, Moscow, 1989, 472 pp. ; English transl. of 1st ed., Grad. Texts in Math., 60, Springer-Verlag, New York–Heidelberg, 1978, x+462 pp. | MR | Zbl | DOI | MR | Zbl

[5] A. V. Bolsinov and A. T. Fomenko, “Orbital classification of geodesic flows on two-dimensional ellipsoids. The Jacobi problem is orbitally equivalent to the integrable Euler case in rigid body dynamics”, Funct. Anal. Appl., 29:3 (1995), 149–160 | DOI | MR | Zbl

[6] A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | Zbl

[7] Nguyen Tien Zung, “Topological invariants of integrable geodesic flows on the higher-dimensional torus and sphere”, Proc. Steklov Inst. Math., 205 (1995), 63–78 | MR | Zbl

[8] K. M. Davison, H. R. Dullin and A. V. Bolsinov, “Geodesics on the ellipsoid and monodromy”, J. Geom. Phys., 57:12 (2007), 2437–2454 | DOI | MR | Zbl

[9] V. V. Kozlov and D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | DOI | MR | Zbl

[10] V. Dragović and M. Radnović, Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2011, viii+293 pp. | DOI | MR | Zbl

[11] V. V. Fokicheva (Vedyushkina), “Description of singularities for system ‘billiard in an ellipse’ ”, Moscow Univ. Math. Bull., 67:5–6 (2012), 217–220 | DOI | MR | Zbl

[12] V. V. Fokicheva (Vedyushkina), “Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas”, Moscow Univ. Math. Bull., 69:4 (2014), 148–158 | DOI | MR | Zbl

[13] V. V. Fokicheva (Vedyushkina), “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Sb. Math., 206:10 (2015), 1463–1507 | DOI | MR | Zbl

[14] V. V. Kozlov, “Topological obstructions to the integrability of natural mechanical systems”, Soviet Math. Dokl., 20:6 (1979), 1413–1415 | MR | Zbl

[15] S. Gitler and S. López de Medrano, “Intersections of quadrics, moment-angle manifolds and connected sums”, Geom. Topol., 17:3 (2013), 1497–1534 | DOI | MR | Zbl

[16] V. V. Kozlov, “Some integrable extensions of Jacobi's problem of geodesics on an ellipsoid”, J. Appl. Math. Mech., 59:1 (1995), 1–7 | DOI | MR | Zbl