Mots-clés : confocal quadrics
@article{SM_2023_214_7_a0,
author = {G. V. Belozerov},
title = {Geodesic flow on an intersection of several confocal quadrics in~$\mathbb{R}^n$},
journal = {Sbornik. Mathematics},
pages = {897--918},
year = {2023},
volume = {214},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_7_a0/}
}
G. V. Belozerov. Geodesic flow on an intersection of several confocal quadrics in $\mathbb{R}^n$. Sbornik. Mathematics, Tome 214 (2023) no. 7, pp. 897-918. http://geodesic.mathdoc.fr/item/SM_2023_214_7_a0/
[1] C. G. J. Jacobi, “Note von der geodätischen Linie auf einem Ellipsoid und den verschiedenen Anwendungen einer merkwürdigen analytischen Substitution”, J. Reine Angew. Math., 1839:19 (1839), 309–313 | DOI | MR | Zbl
[2] C. G. J. Jacobi, Vorlesungen über Dynamik, Gesammelte Werke, Supplementband, 2. rev. Ausg., G. Reimer, Berlin, 1884, viii+300 pp. | DOI | MR | Zbl
[3] M. Chasles, “Sur les lignes géodésiques et les lignes de courbure des surfaces du second degré”, J. Math. Pures Appl., 11 (1846), 5–20
[4] V. I. Arnold, Mathematical methods of classical mechanics, 3d ed., Nauka, Moscow, 1989, 472 pp. ; English transl. of 1st ed., Grad. Texts in Math., 60, Springer-Verlag, New York–Heidelberg, 1978, x+462 pp. | MR | Zbl | DOI | MR | Zbl
[5] A. V. Bolsinov and A. T. Fomenko, “Orbital classification of geodesic flows on two-dimensional ellipsoids. The Jacobi problem is orbitally equivalent to the integrable Euler case in rigid body dynamics”, Funct. Anal. Appl., 29:3 (1995), 149–160 | DOI | MR | Zbl
[6] A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | Zbl
[7] Nguyen Tien Zung, “Topological invariants of integrable geodesic flows on the higher-dimensional torus and sphere”, Proc. Steklov Inst. Math., 205 (1995), 63–78 | MR | Zbl
[8] K. M. Davison, H. R. Dullin and A. V. Bolsinov, “Geodesics on the ellipsoid and monodromy”, J. Geom. Phys., 57:12 (2007), 2437–2454 | DOI | MR | Zbl
[9] V. V. Kozlov and D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | DOI | MR | Zbl
[10] V. Dragović and M. Radnović, Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2011, viii+293 pp. | DOI | MR | Zbl
[11] V. V. Fokicheva (Vedyushkina), “Description of singularities for system ‘billiard in an ellipse’ ”, Moscow Univ. Math. Bull., 67:5–6 (2012), 217–220 | DOI | MR | Zbl
[12] V. V. Fokicheva (Vedyushkina), “Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas”, Moscow Univ. Math. Bull., 69:4 (2014), 148–158 | DOI | MR | Zbl
[13] V. V. Fokicheva (Vedyushkina), “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Sb. Math., 206:10 (2015), 1463–1507 | DOI | MR | Zbl
[14] V. V. Kozlov, “Topological obstructions to the integrability of natural mechanical systems”, Soviet Math. Dokl., 20:6 (1979), 1413–1415 | MR | Zbl
[15] S. Gitler and S. López de Medrano, “Intersections of quadrics, moment-angle manifolds and connected sums”, Geom. Topol., 17:3 (2013), 1497–1534 | DOI | MR | Zbl
[16] V. V. Kozlov, “Some integrable extensions of Jacobi's problem of geodesics on an ellipsoid”, J. Appl. Math. Mech., 59:1 (1995), 1–7 | DOI | MR | Zbl