@article{SM_2023_214_6_a4,
author = {A. A. Tolstonogov},
title = {Comparison theorems for evolution inclusions with maximal monotone operators. $L^2$-theory},
journal = {Sbornik. Mathematics},
pages = {853--877},
year = {2023},
volume = {214},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_6_a4/}
}
A. A. Tolstonogov. Comparison theorems for evolution inclusions with maximal monotone operators. $L^2$-theory. Sbornik. Mathematics, Tome 214 (2023) no. 6, pp. 853-877. http://geodesic.mathdoc.fr/item/SM_2023_214_6_a4/
[1] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Math. Stud., 5, Notas Mat., 50, North-Holland Publishing Co., Amsterdam–London; American Elsevier Publishing Co., Inc., New York, 1973, vi+183 pp. | MR | Zbl
[2] A. A. Tolstonogov, “BV continuous solutions of an evolution inclusion with maximal monotone operator and nonconvex-valued perturbation. Existence theorem”, Set-Valued Var. Anal., 29:1 (2021), 29–60 | DOI | MR | Zbl
[3] J. J. Moreau, “Evolution problem associated with a moving convex set in a Hilbert space”, J. Differential Equations, 26:3 (1977), 347–374 | DOI | MR | Zbl
[4] A. A. Vladimirov, “Nonstationary dissipative evolution equations in a Hilbert space”, Nonlinear Anal., 17:6 (1991), 499–518 | DOI | MR | Zbl
[5] D. Azzam-Laouir, W. Belhoula, C. Castaing and M. D. P. Monteiro Marques, “Perturbed evolution problems with absolutely continuous variation in time and applications”, J. Fixed Point Theory Appl., 21:2 (2019), 40, 32 pp. | DOI | MR | Zbl
[6] C. J. Himmelberg, “Measurable relations”, Fund. Math., 87 (1975), 53–72 | DOI | MR | Zbl
[7] H. Attouch, “Familles d'opérateurs maximaux monotones et measurabilité”, Ann. Mat. Pura Appl. (4), 120 (1979), 35–111 | DOI | MR | Zbl
[8] V. I. Bogachev, Measure theory, v. II, Springer-Verlag, Berlin, 2007, xiv+575 pp. | DOI | MR | Zbl
[9] H. Attouch and R. J.-B. Wets, “Quantitative stability of variational systems. I. The epigraphical distance”, Trans. Amer. Math. Soc., 328:2 (1991), 695–729 | DOI | MR | Zbl
[10] M. G. Crandall and A. Pazy, “Semi-groups of nonlinear contractions and dissipative sets”, J. Funct. Anal., 3:3 (1969), 376–418 | DOI | MR | Zbl
[11] A. A. Tolstonogov, “BV solutions of a convex sweeping process with local conditions in the sense of differential measures”, Appl. Math. Optim., 84, suppl. 1 (2021), S591–S629 | DOI | MR | Zbl
[12] A. A. Tolstonogov, “$L_p$-continuous selections of fixed points of multifunctions with decomposable values. I. Existence theorems”, Siberian Math. J., 40:3 (1999), 595–607 | DOI | MR | Zbl
[13] M. Kunze and M. D. P. Monteiro Marques, “BV solutions to evolution problems with time-dependent domains”, Set-Valued Anal., 5:1 (1997), 57–72 | DOI | MR | Zbl
[14] E. Vilches and Bao Tran Nguyen, “Evolution inclusions governed by time-dependent maximal monotone operators with a full domain”, Set-Valued Var. Anal., 28:3 (2020), 569–581 | DOI | MR | Zbl
[15] I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Grundlehren Math. Wiss., 171, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York–Berlin, 1970, 415 pp. | DOI | MR | Zbl
[16] A. A. Tolstonogov, “Maximal monotonicity of a Nemytskii operator”, Funct. Anal. Appl., 55:3 (2021), 217–225 | DOI | MR | Zbl
[17] A. A. Tolstonogov, “Sweeping process with unbounded nonconvex perturbation”, Nonlinear Anal., 108 (2014), 291–301 | DOI | MR | Zbl
[18] A. A. Tolstonogov, “Polyhedral sweeping processes with unbounded nonconvex-valued perturbation”, J. Differential Equations, 263:11 (2017), 7965–7983 | DOI | MR | Zbl
[19] A. A. Tolstonogov, “Polyhedral multivalued mappings: properties and applications”, Siberian Math. J., 61:2 (2020), 338–358 | DOI | MR | Zbl