Mots-clés : del Pezzo surface
@article{SM_2023_214_6_a2,
author = {A. V. Zaitsev},
title = {Forms of {del~Pezzo} surfaces of degree~$5$ and~$6$},
journal = {Sbornik. Mathematics},
pages = {816--831},
year = {2023},
volume = {214},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_6_a2/}
}
A. V. Zaitsev. Forms of del Pezzo surfaces of degree $5$ and $6$. Sbornik. Mathematics, Tome 214 (2023) no. 6, pp. 816-831. http://geodesic.mathdoc.fr/item/SM_2023_214_6_a2/
[1] I. V. Dolgachev and V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, arithmetic, and geometry, v. I, Progr. Math., 269, Birkhäuser Boston, Boston, MA, 2009, 443–548 | DOI | MR | Zbl
[2] I. V. Dolgachev and V. A. Iskovskikh, “On elements of prime order in the plane Cremona group over a perfect field”, Int. Math. Res. Not. IMRN, 2009:18 (2009), 3467–3485 | DOI | MR | Zbl
[3] E. A. Yasinsky, Automorphisms of real del Pezzo surfaces and the real plane Cremona group, arXiv: 1912.10980
[4] J.-P. Serre, “A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field”, Mosc. Math. J., 9:1 (2009), 183–198 | DOI | MR | Zbl
[5] A. Beauville, “Finite subgroups of $\mathrm{PGL}_2(K)$”, Vector bundles and complex geometry, Contemp. Math., 522, Amer. Math. Soc., Providence, RI, 2010, 23–29 | DOI | MR | Zbl
[6] M. Garcia-Armas, “Finite group actions on curves of genus zero”, J. Algebra, 394 (2013), 173–181 | DOI | MR | Zbl
[7] I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012, xii+639 pp. | DOI | MR | Zbl
[8] A. Skorobogatov, Torsors and rational points, Cambridge Tracts in Math., 144, Cambridge Univ. Press, Cambridge, 2001, viii+187 pp. | DOI | MR | Zbl
[9] Hsueh-Yung Lin, E. Shinder and S. Zimmermann, Factorization centers in dimension two and the Grothendieck ring of varieties, arXiv: 2012.04806
[10] I. R. Shafarevich, Basic algebraic geometry, v. 1, Varieties in projective space, 3rd ed., Springer, Heidelberg, 2013, xviii+310 pp. ; v. 2, Schemes and complex manifolds, 3rd ed., 2013, xiv+262 pp. | DOI | MR | Zbl | DOI | MR | Zbl
[11] The Stacks project https://stacks.math.columbia.edu
[12] A. N. Skorobogatov, “On a theorem of Enriques-Swinnerton-Dyer”, Ann. Fac. Sci. Toulouse Math. (6), 2:3 (1993), 429–440 | DOI | MR | Zbl
[13] A. Auel and M. Bernardara, “Semiorthogonal decompositions and birational geometry of del Pezzo surfaces over arbitrary fields”, Proc. Lond. Math. Soc. (3), 117:1 (2018), 1–64 | DOI | MR | Zbl
[14] Incomplete failures of the inverse Galois problem https://mathoverflow.net/questions/167916/incomplete-failures-of-the-inverse-galois-problem/167917
[15] B. L. van der Waerden, Algebra, v. I, Heidelberger Taschenbücher, 12, 8. Aufl., Springer-Verlag, Berlin–New York, 1971, ix+272 pp. ; v. II, Heidelberger Taschenbücher, 23, 5. Aufl., 1967, x+300 pp. | MR | Zbl | MR | Zbl
[16] I. R. Šafarevič (Shafarevich), “Construction of fields of algebraic numbers with given solvable Galois group”, Amer. Math. Soc. Transl. Ser. 2, 4, Amer. Math. Soc., Providence, RI, 1956, 185–237 | DOI | MR | Zbl
[17] N. Vila, “On the inverse problem of Galois theory”, Publ. Mat., 36:2B (1992), 1053–1073 | DOI | MR | Zbl
[18] S. Gorchinskiy and C. Shramov, Unramified Brauer group and its applications, Transl. Math. Monogr., 246, Amer. Math. Soc., Providence, RI, 2018, xvii+179 pp. | DOI | MR | Zbl
[19] J. Schneider and S. Zimmermann, “Algebraic subgroups of the plane Cremona group over a perfect field”, Épijournal Géom. Algébrique, 5 (2021), 14, 48 pp. | DOI | MR | Zbl