How is a graph not like a manifold?
Sbornik. Mathematics, Tome 214 (2023) no. 6, pp. 793-815 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For an equivariantly formal action of a compact torus $T$ on a smooth manifold $X$ with isolated fixed points we investigate the global homological properties of the graded poset $S(X)$ of face submanifolds. We prove that the condition of the $j$-independency of tangent weights at each fixed point implies the $(j+1)$-acyclicity of the skeleta $S(X)_r$ for $r>j+1$. This result provides a necessary topological condition for a GKM graph to be a GKM graph of some GKM manifold. We use particular acyclicity arguments to describe the equivariant cohomology algebra of an equivariantly formal manifold of dimension $2n$ with an $(n-1)$-independent action of the $(n-1)$-dimensional torus, under certain colourability assumptions on its GKM graph. This description relates the equivariant cohomology algebra to the face algebra of a simplicial poset. This observation underlines a certain similarity between actions of complexity $1$ and torus manifolds. Bibliography: 27 titles.
Keywords: invariant submanifold, homology of posets, GKM theory
Mots-clés : torus action, homotopy colimits.
@article{SM_2023_214_6_a1,
     author = {A. A. Ayzenberg and M. Masuda and G. D. Solomadin},
     title = {How is a~graph not like a~manifold?},
     journal = {Sbornik. Mathematics},
     pages = {793--815},
     year = {2023},
     volume = {214},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_6_a1/}
}
TY  - JOUR
AU  - A. A. Ayzenberg
AU  - M. Masuda
AU  - G. D. Solomadin
TI  - How is a graph not like a manifold?
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 793
EP  - 815
VL  - 214
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_6_a1/
LA  - en
ID  - SM_2023_214_6_a1
ER  - 
%0 Journal Article
%A A. A. Ayzenberg
%A M. Masuda
%A G. D. Solomadin
%T How is a graph not like a manifold?
%J Sbornik. Mathematics
%D 2023
%P 793-815
%V 214
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2023_214_6_a1/
%G en
%F SM_2023_214_6_a1
A. A. Ayzenberg; M. Masuda; G. D. Solomadin. How is a graph not like a manifold?. Sbornik. Mathematics, Tome 214 (2023) no. 6, pp. 793-815. http://geodesic.mathdoc.fr/item/SM_2023_214_6_a1/

[1] A. Adem and J. F. Davis, “Topics in transformation groups”, Handbook of geometric topology, North-Holland, Amsterdam, 2001, 1–54 | DOI | MR | Zbl

[2] A. Ayzenberg, “Locally standard torus actions and $h'$-vectors of simplicial posets”, J. Math. Soc. Japan, 68:4 (2016), 1725–1745 | DOI | MR | Zbl

[3] A. A. Ayzenberg, “Torus actions of complexity 1 and their local properties”, Proc. Steklov Inst. Math., 302 (2018), 16–32 | DOI | MR | Zbl

[4] A. Ayzenberg, “Torus action on quaternionic projective plane and related spaces”, Arnold Math. J., 7:2 (2021), 243–266 | DOI | MR | Zbl

[5] A. Ayzenberg and M. Masuda, Orbit spaces of equivariantly formal torus actions, arXiv: 1912.11696

[6] A. Ayzenberg and V. Cherepanov, “Torus actions of complexity one in non-general position”, Osaka J. Math., 58:4 (2021), 839–853 | MR | Zbl

[7] A. Ayzenberg and V. Cherepanov, Matroids in toric topology, arXiv: 2203.06282

[8] A. Björner, “The homology and shellability of matroids and geometric lattices”, Matroid applications, Encyclopedia Math. Appl., 40, Cambridge Univ. Press, Cambridge, 1992, 226–283 | DOI | MR | Zbl

[9] A. Björner, M. L. Wachs and V. Welker, “Poset fiber theorems”, Trans. Amer. Math. Soc., 357:5 (2005), 1877–1899 | DOI | MR | Zbl

[10] E. D. Bolker, V. W. Guillemin and T. S. Holm, How is a graph like a manifold?, arXiv: math/0206103

[11] G. E. Bredon, “The free part of a torus action and related numerical equalities”, Duke Math. J., 41:4 (1974), 843–854 | DOI | MR | Zbl

[12] V. M. Buchstaber and T. E. Panov, Toric topology, Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, 2015, xiv+518 pp. | DOI | MR | Zbl

[13] J. D. Carlson, E. A. Gamse and Y. Karshon, Realization of fixed-point data for GKM actions https://www.ma.imperial.ac.uk/~jcarlson/realization.pdf

[14] T. tom Dieck, Transformation groups, De Gruyter Stud. Math., 8, Walter de Gruyter Co., Berlin, 1987, x+312 pp. | DOI | MR | Zbl

[15] D. Dugger, A primer on homotopy colimits https://pages.uoregon.edu/ddugger/hocolim.pdf

[16] M. Franz and V. Puppe, “Freeness of equivariant cohomology and mutants of compactified representations”, Toric topology, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 87–98 | DOI | MR | Zbl

[17] M. Franz and V. Puppe, “Exact cohomology sequences with integral coefficients for torus actions”, Transform. Groups, 12:1 (2007), 65–76 | DOI | MR | Zbl

[18] M. Goresky, R. Kottwitz and R. MacPherson, “Equivariant cohomology, Koszul duality, and the localization theorem”, Invent. Math., 131:1 (1998), 25–83 | DOI | MR | Zbl

[19] V. Guilleminn and C. Zara, “1-skeleta, Betti numbers, and equivariant cohomology”, Duke Math. J., 107:2 (2001), 283–349 | DOI | MR | Zbl

[20] Wu Yi Hsiang, Cohomology theory of topological transformation groups, Ergeb. Math. Grenzgeb., 85, Springer-Verlag, New York–Heidelberg, 1975, x+164 pp. | DOI | MR | Zbl

[21] S. Illman, “The equivariant triangulation theorem for actions of compact Lie groups”, Math. Ann., 262:4 (1983), 487–501 | DOI | MR | Zbl

[22] M. Joswig, “The group of projectivities and colouring of the facets of a simple polytope”, Russian Math. Surveys, 56:3 (2001), 584–585 | DOI

[23] S. Kuroki, “Introduction to GKM theory”, Trends in Math., 11:2 (2009), 113–129

[24] M. Masuda and T. Panov, “On the cohomology of torus manifolds”, Osaka J. Math., 43:3 (2006), 711–746 | MR | Zbl

[25] D. Quillen, “Higher algebraic K-theory. I”, Algebraic K-theory (Battelle Memorial Inst., Seattle, WA 1972), v. I, Lecture Notes in Math., 341, Higher K-theories, Springer, Berlin, 1973, 85–147 | DOI | MR | Zbl

[26] R. P. Stanley, “$f$-vectors and $h$-vectors of simplicial posets”, J. Pure Appl. Algebra, 71:2–3 (1991), 319–331 | DOI | MR | Zbl

[27] V. Welker, G. M. Ziegler and R. T. Živaljević, “Homotopy colimits — comparison lemmas for combinatorial applications”, J. Reine Angew. Math., 1999:509 (1999), 117–149 | DOI | MR | Zbl