How is a~graph not like a~manifold?
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 6, pp. 793-815
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For an equivariantly formal action of a compact torus $T$ on a smooth manifold $X$ with isolated fixed points we investigate the global homological properties of the graded poset $S(X)$ of face submanifolds. We prove that the condition of the $j$-independency of tangent weights at each fixed point implies the $(j+1)$-acyclicity of the skeleta $S(X)_r$ for $r>j+1$. This result provides a necessary topological condition for a GKM graph to be a GKM graph of some GKM manifold. We use particular acyclicity arguments to describe the equivariant cohomology algebra of an equivariantly formal manifold of dimension $2n$ with an $(n-1)$-independent action of the $(n-1)$-dimensional torus, under certain colourability assumptions on its GKM graph. This description relates the equivariant cohomology algebra to the face algebra of a simplicial poset. This observation underlines a certain similarity between actions of complexity $1$ and torus manifolds. 
Bibliography: 27 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
invariant submanifold, homology of posets, GKM theory
Mots-clés : torus action, homotopy colimits.
                    
                  
                
                
                Mots-clés : torus action, homotopy colimits.
@article{SM_2023_214_6_a1,
     author = {A. A. Ayzenberg and M. Masuda and G. D. Solomadin},
     title = {How is a~graph not like a~manifold?},
     journal = {Sbornik. Mathematics},
     pages = {793--815},
     publisher = {mathdoc},
     volume = {214},
     number = {6},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_6_a1/}
}
                      
                      
                    A. A. Ayzenberg; M. Masuda; G. D. Solomadin. How is a~graph not like a~manifold?. Sbornik. Mathematics, Tome 214 (2023) no. 6, pp. 793-815. http://geodesic.mathdoc.fr/item/SM_2023_214_6_a1/
