Birational rigidity of $G$-del~Pezzo threefolds of degree~$2$
Sbornik. Mathematics, Tome 214 (2023) no. 6, pp. 757-792

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify nodal rational non-$\mathbb{Q}$-factorial del Pezzo threefolds of degree $2$ which can be $G$-birationally rigid for some subgroup $G\subset\operatorname{Aut}(X)$. Bibliography: 29 titles.
Keywords: del Pezzo threefolds, Cremona group, birational rigidity.
@article{SM_2023_214_6_a0,
     author = {A. A. Avilov},
     title = {Birational rigidity of $G${-del~Pezzo} threefolds of degree~$2$},
     journal = {Sbornik. Mathematics},
     pages = {757--792},
     publisher = {mathdoc},
     volume = {214},
     number = {6},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_6_a0/}
}
TY  - JOUR
AU  - A. A. Avilov
TI  - Birational rigidity of $G$-del~Pezzo threefolds of degree~$2$
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 757
EP  - 792
VL  - 214
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_6_a0/
LA  - en
ID  - SM_2023_214_6_a0
ER  - 
%0 Journal Article
%A A. A. Avilov
%T Birational rigidity of $G$-del~Pezzo threefolds of degree~$2$
%J Sbornik. Mathematics
%D 2023
%P 757-792
%V 214
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_6_a0/
%G en
%F SM_2023_214_6_a0
A. A. Avilov. Birational rigidity of $G$-del~Pezzo threefolds of degree~$2$. Sbornik. Mathematics, Tome 214 (2023) no. 6, pp. 757-792. http://geodesic.mathdoc.fr/item/SM_2023_214_6_a0/