Birational rigidity of $G$-del Pezzo threefolds of degree $2$
Sbornik. Mathematics, Tome 214 (2023) no. 6, pp. 757-792 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We classify nodal rational non-$\mathbb{Q}$-factorial del Pezzo threefolds of degree $2$ which can be $G$-birationally rigid for some subgroup $G\subset\operatorname{Aut}(X)$. Bibliography: 29 titles.
Keywords: del Pezzo threefolds, Cremona group, birational rigidity.
@article{SM_2023_214_6_a0,
     author = {A. A. Avilov},
     title = {Birational rigidity of $G${-del~Pezzo} threefolds of degree~$2$},
     journal = {Sbornik. Mathematics},
     pages = {757--792},
     year = {2023},
     volume = {214},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_6_a0/}
}
TY  - JOUR
AU  - A. A. Avilov
TI  - Birational rigidity of $G$-del Pezzo threefolds of degree $2$
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 757
EP  - 792
VL  - 214
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_6_a0/
LA  - en
ID  - SM_2023_214_6_a0
ER  - 
%0 Journal Article
%A A. A. Avilov
%T Birational rigidity of $G$-del Pezzo threefolds of degree $2$
%J Sbornik. Mathematics
%D 2023
%P 757-792
%V 214
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2023_214_6_a0/
%G en
%F SM_2023_214_6_a0
A. A. Avilov. Birational rigidity of $G$-del Pezzo threefolds of degree $2$. Sbornik. Mathematics, Tome 214 (2023) no. 6, pp. 757-792. http://geodesic.mathdoc.fr/item/SM_2023_214_6_a0/

[1] D. Abramovich and Jianhua Wang, “Equivariant resolution of singularities in characteristic 0”, Math. Res. Lett., 4:2–3 (1997), 427–433 | DOI | MR | Zbl

[2] A. A. Avilov, “Automorphisms of threefolds that can be represented as an intersection of two quadrics”, Sb. Math., 207:3 (2016), 315–330 | DOI

[3] A. Avilov, “Automorphisms of singular three-dimensional cubic hypersurfaces”, Eur. J. Math., 4:3 (2018), 761–777 | DOI | MR | Zbl

[4] A. A. Avilov, “Biregular and birational geometry of quartic double solids with 15 nodes”, Izv. Math., 83:3 (2019), 415–423 | DOI | MR | Zbl

[5] I. Cheltsov, Kummer quartic double solids, arXiv: 2202.11668

[6] I. Cheltsov, A. Dubouloz and T. Kishimoto, Toric $G$-solid Fano threefolds, arXiv: 2007.14197

[7] I. Cheltsov, V. Przyjalkowski and C. Shramov, “Which quartic double solids are rational?”, J. Algebraic Geom., 28:2 (2019), 201–243 | DOI | MR | Zbl

[8] I. Cheltsov, V. Przyjalkowski and C. Shramov, “Quartic double solids with icosahedral symmetry”, Eur. J. Math., 2:1 (2016), 96–119 | DOI | MR | Zbl

[9] I. Cheltsov and C. Shramov, “Five embeddings of one simple group”, Trans. Amer. Math. Soc., 366:3 (2014), 1289–1331 | DOI | MR | Zbl

[10] I. Cheltsov and C. Shramov, Cremona groups and the icosahedron, Monogr. Res. Notes Math., CRC Press, Boca Raton, FL, 2016, xxi+504 pp. | DOI | MR | Zbl

[11] I. Cheltsov and C. Shramov, “Three embeddings of the Klein simple group into the Cremona group of rank three”, Transform. Groups, 17:2 (2012), 303–350 | DOI | MR | Zbl

[12] I. Cheltsov and C. Shramov, “Finite collineation groups and birational rigidity”, Selecta Math. (N.S.), 25:5 (2019), 71, 68 pp. | DOI | MR | Zbl

[13] I. V. Dolgachev and V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, arithmetic, and geometry, v. I, Progr. Math., 269, Birkhäuser Boston, Boston, MA, 2009, 443–548 | DOI | MR | Zbl

[14] I. V. Dolgachev, “Abstract configurations in algebraic geometry”, The Fano conference, Univ. Torino, Turin, 2004, 423–462 | MR | Zbl

[15] T. Fujita, “On singular del Pezzo varieties”, Algebraic geometry (L'Aquila 1988), Lecture Notes in Math., 1417, Springer, Berlin, 1990, 117–128 | DOI | MR | Zbl

[16] T. Fujita, “On the structure of polarized manifolds with total deficiency one. I”, J. Math. Soc. Japan, 32:4 (1980), 709–725 ; II, 33:3 (1981), 415–434 ; III, 36:1 (1984), 75–89 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[17] T. Fujita, Classification theories of polarized varieties, London Math. Soc. Lecture Note Ser., 155, Cambridge Univ. Press, Cambridge, 1990, xiv+205 pp. | DOI | MR | Zbl

[18] P. Jahnke and Th. Peternell, “Almost del Pezzo manifolds”, Adv. Geom., 8:3 (2008), 387–411 | DOI | MR | Zbl

[19] A. Kuznetsov and Yu. Prokhorov, On higher-dimensional del Pezzo varieties, arXiv: 2206.01549

[20] K. Matsuki, Introduction to the Mori program, Universitext, Springer-Verlag, New York, 2002, xxiv+478 pp. | DOI | MR | Zbl

[21] S. Mori and S. Mukai, “Classification of Fano 3-folds with $B_{2}\geq 2$”, Manuscripta Math., 36:2 (1981/82), 147–162 | DOI | MR | Zbl

[22] Yu. Prokhorov, “$G$-Fano threefolds. I”, Adv. Geom., 13:3 (2013), 389–418 | DOI | MR | Zbl

[23] Yu. Prokhorov, “2-elementary subgroups of the space Cremona group”, Automorphisms in birational and affine geometry, Springer Proc. Math. Stat., 79, Springer, Cham, 2014, 215–229 | DOI | MR | Zbl

[24] Yu. G. Prokhorov, “On $G$-Fano threefolds”, Izv. Math., 79:4 (2015), 795–808 | DOI | MR | Zbl

[25] Yu. Prokhorov, “$p$-elementary subgroups of the Cremona group of rank 3”, Classification of algebraic varieties, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, 327–338 | DOI | MR | Zbl

[26] Yu. Prokhorov, “Simple finite subgroups of the Cremona group of rank 3”, J. Algebraic Geom., 21:3 (2012), 563–600 | DOI | MR | Zbl

[27] Yu. G. Prokhorov, “Singular Fano threefolds of genus 12”, Sb. Math., 207:7 (2016), 983–1009 | DOI | MR | Zbl

[28] Yu. G. Prokhorov, “Equivariant minimal model program”, Russian Math. Surveys, 76:3 (2021), 461–542 | DOI | MR | Zbl

[29] G. Sanna, Rational curves and instantons on the Fano threefold $Y_{5}$, PhD thesis, SISSA, 2014, 120 pp.