Slim exceptional sets of Waring-Goldbach problems involving squares and cubes of primes
Sbornik. Mathematics, Tome 214 (2023) no. 5, pp. 744-756

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p_{1},p_{2},\dots,p_{6}$ be prime numbers. First we show that, with at most $O(N^{1/12+\varepsilon})$ exceptions, all even positive integers not exceeding $N$ can be represented in the form $p_{1}^{2}+p_{2}^{2}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}+p_{6}^{3}$, which improves the previous result $O(N^{1/4+\varepsilon})$ obtained by Y. H. Liu. Moreover, we also prove that, with at most $O(N^{5/12+\varepsilon})$ exceptions, all even positive integers not exceeding $N$ can be represented in the form $p_{1}^{2}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}+p_{5}^{3}+p_{6}^{3}$. Bibliography: 21 titles.
Keywords: Waring-Goldbach problem, exceptional set, Hardy-Littlewood method.
@article{SM_2023_214_5_a5,
     author = {X. Han and H. Liu},
     title = {Slim exceptional sets of {Waring-Goldbach} problems involving squares and cubes of primes},
     journal = {Sbornik. Mathematics},
     pages = {744--756},
     publisher = {mathdoc},
     volume = {214},
     number = {5},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_5_a5/}
}
TY  - JOUR
AU  - X. Han
AU  - H. Liu
TI  - Slim exceptional sets of Waring-Goldbach problems involving squares and cubes of primes
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 744
EP  - 756
VL  - 214
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_5_a5/
LA  - en
ID  - SM_2023_214_5_a5
ER  - 
%0 Journal Article
%A X. Han
%A H. Liu
%T Slim exceptional sets of Waring-Goldbach problems involving squares and cubes of primes
%J Sbornik. Mathematics
%D 2023
%P 744-756
%V 214
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_5_a5/
%G en
%F SM_2023_214_5_a5
X. Han; H. Liu. Slim exceptional sets of Waring-Goldbach problems involving squares and cubes of primes. Sbornik. Mathematics, Tome 214 (2023) no. 5, pp. 744-756. http://geodesic.mathdoc.fr/item/SM_2023_214_5_a5/