Some classes of almost Hermitian structures that can be realized on~$S^6$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 5, pp. 732-743
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Structures of cohomogeneity one on $S^6$ are under investigation. Examples of semi-Kähler and quasi-Kähler structures are constructed. Questions concerning the existence of almost Hermitian structures of cohomogeneity one on a round sphere are investigated.
Bibliography: 14 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
almost Hermitian structures, $6$-sphere, structures of cohomogeneity one.
                    
                    
                    
                  
                
                
                @article{SM_2023_214_5_a4,
     author = {N. A. Daurtseva},
     title = {Some classes of almost {Hermitian} structures that can be realized on~$S^6$},
     journal = {Sbornik. Mathematics},
     pages = {732--743},
     publisher = {mathdoc},
     volume = {214},
     number = {5},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_5_a4/}
}
                      
                      
                    N. A. Daurtseva. Some classes of almost Hermitian structures that can be realized on~$S^6$. Sbornik. Mathematics, Tome 214 (2023) no. 5, pp. 732-743. http://geodesic.mathdoc.fr/item/SM_2023_214_5_a4/
