Some classes of almost Hermitian structures that can be realized on~$S^6$
Sbornik. Mathematics, Tome 214 (2023) no. 5, pp. 732-743

Voir la notice de l'article provenant de la source Math-Net.Ru

Structures of cohomogeneity one on $S^6$ are under investigation. Examples of semi-Kähler and quasi-Kähler structures are constructed. Questions concerning the existence of almost Hermitian structures of cohomogeneity one on a round sphere are investigated. Bibliography: 14 titles.
Keywords: almost Hermitian structures, $6$-sphere, structures of cohomogeneity one.
@article{SM_2023_214_5_a4,
     author = {N. A. Daurtseva},
     title = {Some classes of almost {Hermitian} structures that can be realized on~$S^6$},
     journal = {Sbornik. Mathematics},
     pages = {732--743},
     publisher = {mathdoc},
     volume = {214},
     number = {5},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_5_a4/}
}
TY  - JOUR
AU  - N. A. Daurtseva
TI  - Some classes of almost Hermitian structures that can be realized on~$S^6$
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 732
EP  - 743
VL  - 214
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_5_a4/
LA  - en
ID  - SM_2023_214_5_a4
ER  - 
%0 Journal Article
%A N. A. Daurtseva
%T Some classes of almost Hermitian structures that can be realized on~$S^6$
%J Sbornik. Mathematics
%D 2023
%P 732-743
%V 214
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_5_a4/
%G en
%F SM_2023_214_5_a4
N. A. Daurtseva. Some classes of almost Hermitian structures that can be realized on~$S^6$. Sbornik. Mathematics, Tome 214 (2023) no. 5, pp. 732-743. http://geodesic.mathdoc.fr/item/SM_2023_214_5_a4/