@article{SM_2023_214_5_a4,
author = {N. A. Daurtseva},
title = {Some classes of almost {Hermitian} structures that can be realized on~$S^6$},
journal = {Sbornik. Mathematics},
pages = {732--743},
year = {2023},
volume = {214},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_5_a4/}
}
N. A. Daurtseva. Some classes of almost Hermitian structures that can be realized on $S^6$. Sbornik. Mathematics, Tome 214 (2023) no. 5, pp. 732-743. http://geodesic.mathdoc.fr/item/SM_2023_214_5_a4/
[1] E. Calaby and H. Gluck, “What are the best almost-complex structures on the 6-sphere?”, Differential geometry: geometry in mathematical physics and related topics, Part 2 (Los Angeles, CA 1990), Proc. Sympos. Pure Math., 54, Part 2, Amer. Math. Soc., Providence, RI, 1993, 99–106 | DOI | MR | Zbl
[2] T. Friedrich, “Nearly Kähler and nearly parallel $G_2$-structures on spheres”, Arch. Math. (Brno), 42:5 (2006), 241–243 | MR | Zbl
[3] C. LeBrun, “Orthogonal complex structures on $S^6$”, Proc. Amer. Math. Soc., 101:1 (1987), 136–138 | DOI | MR | Zbl
[4] G. Bor and L. Hernández-Lamoneda, “The canonical bundle of a Hermitian manifold”, Bol. Soc. Mat. Mexicana (3), 5:1 (1999), 187–198 | MR | Zbl
[5] L. Foscolo and M. Haskins, “New $G_2$-holonomy cones and exotic nearly Kähler structures on $S^6$ and $S^3\times S^3$”, Ann. of Math. (2), 185:1 (2017), 59–130 | DOI | MR | Zbl
[6] A. Gray and L. M. Hervella, “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Mat. Pura Appl. (4), 123 (1980), 35–58 | DOI | MR | Zbl
[7] P. S. Mostert, “On a compact Lie group acting on a manifold”, Ann. of Math. (2), 65:3 (1957), 447–455 | DOI | MR | Zbl
[8] L. Bérard-Bergery, “Sur de nouvelles variétés riemanniennes d'Einstein”, Inst. Élie Cartan, 6, Univ. Nancy, Nancy, 1982, 1–60 | MR | Zbl
[9] G. E. Bredon, Introduction to compact transformation groups, Pure Appl. Math., 46, Academic Press, New York–London, 1972, xiii+459 pp. | MR | Zbl
[10] F. Podestà and A. Spiro, “Six-dimensional nearly Kähler manifolds of cohomogeneity one”, J. Geom. Phys., 60:2 (2010), 156–164 | DOI | MR | Zbl
[11] F. Podestà and A. Spiro, “Six-dimensional nearly Kähler manifolds of cohomogeneity one (II)”, Comm. Math. Phys., 312:2 (2012), 477–500 | DOI | MR | Zbl
[12] P. Candelas and X. C. de la Ossa, “Comments on conifolds”, Nuclear Phys. B, 342:1 (1990), 246–268 | DOI | MR
[13] N. Hitchin, “Stable forms and special metrics”, Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao 2000), Contemp. Math., 288, Amer. Math. Soc., Providence, RI, 2001, 70–89 | DOI | MR | Zbl
[14] N. A. Daurtseva, “Quasi-Kähler structures of cohomogeneity 1 on $S^2\times S^4$”, Siberian Math. J., 61:4 (2020), 600–609 | DOI | MR | Zbl