A~combinatorial invariant of gradient-like flows on a~connected sum of $\mathbb{S}^{n-1}\times\mathbb{S}^1$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 5, pp. 703-731
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We obtain necessary and sufficient conditions for the topological equivalence of gradient-like flows without heteroclinic intersections defined on the connected sum of a finite number of manifolds homeomorphic to $\mathbb{S}^{n-1}\times \mathbb{S}^1$, $n\geq 3$. For $n>3$, this result extends substantially the class of manifolds such that structurally stable systems on these manifolds admit a topological classification.
Bibliography: 36 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
topological classification, gradient-like flow, Morse-Smale flow.
                    
                    
                    
                  
                
                
                @article{SM_2023_214_5_a3,
     author = {V. Z. Grines and E. Ya. Gurevich},
     title = {A~combinatorial invariant of gradient-like flows on a~connected sum of $\mathbb{S}^{n-1}\times\mathbb{S}^1$},
     journal = {Sbornik. Mathematics},
     pages = {703--731},
     publisher = {mathdoc},
     volume = {214},
     number = {5},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_5_a3/}
}
                      
                      
                    TY  - JOUR
AU  - V. Z. Grines
AU  - E. Ya. Gurevich
TI  - A~combinatorial invariant of gradient-like flows on a~connected sum of $\mathbb{S}^{n-1}\times\mathbb{S}^1$
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 703
EP  - 731
VL  - 214
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_5_a3/
LA  - en
ID  - SM_2023_214_5_a3
ER  - 
                      
                      
                    %0 Journal Article
%A V. Z. Grines
%A E. Ya. Gurevich
%T A~combinatorial invariant of gradient-like flows on a~connected sum of $\mathbb{S}^{n-1}\times\mathbb{S}^1$
%J Sbornik. Mathematics
%D 2023
%P 703-731
%V 214
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_5_a3/
%G en
%F SM_2023_214_5_a3
                      
                      
                    V. Z. Grines; E. Ya. Gurevich. A~combinatorial invariant of gradient-like flows on a~connected sum of $\mathbb{S}^{n-1}\times\mathbb{S}^1$. Sbornik. Mathematics, Tome 214 (2023) no. 5, pp. 703-731. http://geodesic.mathdoc.fr/item/SM_2023_214_5_a3/
                  
                