A combinatorial invariant of gradient-like flows on a connected sum of $\mathbb{S}^{n-1}\times\mathbb{S}^1$
Sbornik. Mathematics, Tome 214 (2023) no. 5, pp. 703-731 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain necessary and sufficient conditions for the topological equivalence of gradient-like flows without heteroclinic intersections defined on the connected sum of a finite number of manifolds homeomorphic to $\mathbb{S}^{n-1}\times \mathbb{S}^1$, $n\geq 3$. For $n>3$, this result extends substantially the class of manifolds such that structurally stable systems on these manifolds admit a topological classification. Bibliography: 36 titles.
Keywords: topological classification, gradient-like flow, Morse-Smale flow.
@article{SM_2023_214_5_a3,
     author = {V. Z. Grines and E. Ya. Gurevich},
     title = {A~combinatorial invariant of gradient-like flows on a~connected sum of $\mathbb{S}^{n-1}\times\mathbb{S}^1$},
     journal = {Sbornik. Mathematics},
     pages = {703--731},
     year = {2023},
     volume = {214},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_5_a3/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - E. Ya. Gurevich
TI  - A combinatorial invariant of gradient-like flows on a connected sum of $\mathbb{S}^{n-1}\times\mathbb{S}^1$
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 703
EP  - 731
VL  - 214
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_5_a3/
LA  - en
ID  - SM_2023_214_5_a3
ER  - 
%0 Journal Article
%A V. Z. Grines
%A E. Ya. Gurevich
%T A combinatorial invariant of gradient-like flows on a connected sum of $\mathbb{S}^{n-1}\times\mathbb{S}^1$
%J Sbornik. Mathematics
%D 2023
%P 703-731
%V 214
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2023_214_5_a3/
%G en
%F SM_2023_214_5_a3
V. Z. Grines; E. Ya. Gurevich. A combinatorial invariant of gradient-like flows on a connected sum of $\mathbb{S}^{n-1}\times\mathbb{S}^1$. Sbornik. Mathematics, Tome 214 (2023) no. 5, pp. 703-731. http://geodesic.mathdoc.fr/item/SM_2023_214_5_a3/

[1] S. Smale, “On gradient dynamical systems”, Ann. of Math. (2), 74 (1961), 199–206 | DOI | MR | Zbl

[2] L. E. Èl'sgol'c, “Estimate for the number of singular points of a dynamical system defined on a manifold”, Amer. Math. Soc. Translation, 68, Amer. Math. Soc., Providence, RI, 1952, 14 pp. | MR | Zbl

[3] S. Smale, “Morse inequalities for a dynamical system”, Bull. Amer. Math. Soc., 66 (1960), 43–49 | DOI | MR | Zbl

[4] C. Bonatti, V. Grines, V. Medvedev and E. Pécou, “Three-manifolds admitting Morse-Smale diffeomorphisms without heteroclinic curves”, Topology Appl., 117:3 (2002), 335–344 | DOI | MR | Zbl

[5] V. Z. Grines, E. A. Gurevich and O. V. Pochinka, “Topological classification of Morse-Smale diffeomorphisms without heteroclinic intersections”, J. Math. Sci. (N.Y.), 208:1 (2015), 81–90 | DOI | MR | Zbl

[6] S. Ju. Piljugin, “Phase diagrams determining Morse-Smale systems without periodic trajectories on spheres”, Differential Equations, 14:2 (1978), 170–177 | MR | Zbl

[7] V. Z. Grines and E. Ya. Gurevich, “Morse index of saddle equilibria of gradient-like flows on connected sums of $\mathbb S^{n-1}\times \mathbb S^1$”, Math. Notes, 111:4 (2022), 624–627 | DOI | MR | Zbl

[8] A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maĭer, Theory of bifurcations of dynamic systems on a plane, Halsted Press [John Wiley Sons], New York–Toronto; Israel Program for Scientific Translations, Jerusalem–London, 1973, xiv+482 pp. | MR

[9] M. M. Peixoto, “On the classification of flows on 2-manifolds”, Dynamical systems (Univ. Bahia, Salvador 1971), Academic Press, New York, 1973, 389–419 | DOI | MR | Zbl

[10] Ya. L. Umanskiĭ, “Necessary and sufficient conditions for topological equivalence of three-dimensional Morse-Smale dynamical systems with a finite number of singular trajectories”, Math. USSR-Sb., 69:1 (1991), 227–253 | DOI | MR | Zbl

[11] A. A. Oshemkov and V. V. Sharko, “Classification of Morse-Smale flows on two-dimensional manifolds”, Sb. Math., 189:8 (1998), 1205–1250 | DOI | MR | Zbl

[12] V. Grines, E. Gurevich, O. Pochinka and D. Malyshev, “On topological classification of Morse-Smale diffeomorphisms on the sphere $S^n$ ($n>3$)”, Nonlinearity, 33:12 (2020), 7088–7113 | DOI | MR | Zbl

[13] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl

[14] L. E. J. Brouwer, “Über Abbildung von Mannigfaltigkeiten”, Math. Ann., 71:1 (1911), 97–115 | DOI | MR | Zbl

[15] A. F. Filippov, “An elementary proof of Jordan's theorem”, Uspekhi Mat. Nauk, 5:5(39) (1950), 173–176 (Russian) | MR | Zbl

[16] M. H. A. Newman, Elements of the topology of plane sets of points, Reprint of the 2nd ed., Cambridge Univ. Press, Cambridge, 1954, vii+214 pp. | MR | Zbl

[17] E. E. Moise, Geometric topology in dimensions 2 and 3, Grad. Texts in Math., 47, Springer-Verlag, New York–Heidelberg, 1977, x+262 pp. | DOI | MR | Zbl

[18] M. Brown, “A proof of the generalized Schoenflies theorem”, Bull. Amer. Math. Soc., 66:2 (1960), 74–76 | DOI | MR | Zbl

[19] M. Brown and H. Gluck, “Stable structures on manifolds. I. Homeomorphisms of $S^{n}$”, Ann. of Math. (2), 79:1 (1964), 1–17 | DOI | MR | Zbl

[20] L. V. Keldysh, “Topological imbeddings in Euclidean space”, Proc. Steklov Inst. Math., 81 (1966), 1–203 | MR | MR | Zbl

[21] G. M. Fisher, “On the group of all homeomorphisms of a manifold”, Trans. Amer. Math. Soc., 97 (1960), 193–212 | DOI | MR | Zbl

[22] D. Rolfsen, Knots and links, AMS Chelsea Publishing Series, 346, Reprint with corr. of the 1976 original, Amer. Math. Soc., Providence, RI, 2003, ix+439 pp. | MR | Zbl

[23] R. C. Kirby, “Stable homeomorphisms and the annulus conjecture”, Ann. of Math. (2), 89:3 (1969), 575–582 | DOI | MR | Zbl

[24] F. Quinn, “The embedding theorems for towers”, Four-manifold theory (Durham, NH 1982), Contemp. Math., 35, Amer. Math. Soc., Providence, RI, 1984, 461–471 | DOI | MR | Zbl

[25] R. D. Edwards, “The solution of the 4-dimensional annulus conjecture (after Frank Quinn)”, Four-manifold theory (Durham, NH 1982), Contemp. Math., 35, Amer. Math. Soc., Providence, RI, 1984, 211–264 | DOI | MR | Zbl

[26] A. V. Chernavskii, “On the work of L. V. Keldysh and her seminar”, Russian Math. Surveys, 60:4 (2005), 589–614 | DOI | MR | Zbl

[27] V. V. Prasolov, Elements of homology theory, Grad. Stud. Math., 81, Amer. Math. Soc., Providence, RI, 2007, x+418 pp. | DOI | MR | Zbl

[28] M. Brown, “Locally flat imbeddings of topological manifolds”, Ann. of Math. (2), 75:2 (1962), 331–341 | DOI | MR | Zbl

[29] M. W. Hirsch, Differential topology, Grad. Texts in Math., 33, Springer-Verlag, New York–Heidelberg, 1976, x+221 pp. | DOI | MR | Zbl

[30] O. Melnikov, R. Tyshkevich, V. Yemelichev and V. Sarvanov, Lectures on graph theory, Bibliographisches Institut, Mannheim, 1994, x+371 pp. | MR | MR | Zbl

[31] K. R. Meyer, “Energy functions for Morse Smale systems”, Amer. J. Math., 90:4 (1968), 1031–1040 | DOI | MR | Zbl

[32] W. Hurewicz and H. Wallman, Dimension theory, Princeton Univ. Press, Princeton, NJ, 1948, vii+165 pp. | MR | Zbl

[33] Y. Matsumoto, An introduction to Morse theory, Transl. from the 1997 Japan. original, Transl. Math. Monogr., 208, Iwanami Series in Modern Mathematics, Amer. Math. Soc., Providence, RI, 2002, xiv+219 pp. | DOI | MR | Zbl

[34] J. Milnor, Lectures on the $h$-cobordism theorem, Princeton Univ. Press, Princeton, NJ, 1965, v+116 pp. | DOI | MR | Zbl

[35] V. Z. Grines, E. Ya. Gurevich and V. S. Medvedev, “On realization of topological conjugacy classes of Morse-Smale cascades on the sphere $S^n$”, Proc. Steklov Inst. Math., 310 (2020), 108–123 | DOI | MR | Zbl

[36] V. S. Medvedev and Ya. L. Umanskii, “Decomposition of $n$-dimensional manifolds into simple manifolds”, Soviet Math. (Iz. VUZ), 23:1 (1979), 36–39 | MR | Zbl