Levinson-type theorem and Dyn'kin problems
Sbornik. Mathematics, Tome 214 (2023) no. 5, pp. 676-702 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Questions relating to theorems of Levinson-Sjöberg-Wolf type in complex and harmonic analysis are explored. The well-known Dyn'kin problem of effective estimation of the growth majorant of an analytic function in a neighbourhood of its set of singularities is discussed, together with the problem, dual to it in certain sense, on the rate of convergence to zero of the extremal function in a nonquasianalytic Carleman class in a neighbourhood of a point at which all the derivatives of functions in this class vanish. The first problem was solved by Matsaev and Sodin. Here the second Dyn'kin problem, going back to Bang, is fully solved. As an application, a sharp asymptotic estimate is given for the distance between the imaginary exponentials and the algebraic polynomials in a weighted space of continuous functions on the real line. Bibliography: 24 titles.
Keywords: theorems of Levinson-Sjöberg-Wolf type, extremal function, weighted space on the real line.
Mots-clés : nonquasianalytic Carleman class, Fourier transform
@article{SM_2023_214_5_a2,
     author = {A. M. Gaisin and R. A. Gaisin},
     title = {Levinson-type theorem and {Dyn'kin} problems},
     journal = {Sbornik. Mathematics},
     pages = {676--702},
     year = {2023},
     volume = {214},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_5_a2/}
}
TY  - JOUR
AU  - A. M. Gaisin
AU  - R. A. Gaisin
TI  - Levinson-type theorem and Dyn'kin problems
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 676
EP  - 702
VL  - 214
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_5_a2/
LA  - en
ID  - SM_2023_214_5_a2
ER  - 
%0 Journal Article
%A A. M. Gaisin
%A R. A. Gaisin
%T Levinson-type theorem and Dyn'kin problems
%J Sbornik. Mathematics
%D 2023
%P 676-702
%V 214
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2023_214_5_a2/
%G en
%F SM_2023_214_5_a2
A. M. Gaisin; R. A. Gaisin. Levinson-type theorem and Dyn'kin problems. Sbornik. Mathematics, Tome 214 (2023) no. 5, pp. 676-702. http://geodesic.mathdoc.fr/item/SM_2023_214_5_a2/

[1] N. Levinson, Gap and density theorems, Amer. Math. Soc. Colloq. Publ., 26, Amer. Math. Soc., New York, 1940, viii+246 pp. | MR | Zbl

[2] V. P. Gurarii, “On Levinson's theorem concerning normal families of analytic functions”, Investigations in linear operators and function theory, Pt. 1, Semin. Math., Springer, Boston, MA, 1972, 124–127 | DOI | MR | Zbl

[3] N. Sjöberg, “Sur les minorantes subharmoniques d'une function donée”, Comptes rendus du IX congres des mathématiciens scandinaves (Helsinki 1938), Helsingfors, 1939, 309–319 | Zbl

[4] T. Carleman, “Extension d'un théorème de Liouville”, Acta Math., 48:3–4 (1926), 363–366 | DOI | MR | Zbl

[5] F. Wolf, “On majorants of subharmonic and analytic functions”, Bull. Amer. Math. Soc., 48:12 (1942), 925–932 | DOI | MR | Zbl

[6] P. Koosis, The logarithmic integral, v. I, Cambridge Stud. Adv. Math., 12, Cambridge Univ. Press, Cambridge, 1988, xvi+606 pp. ; Corr. reprint of the 1988 original, 1998, xviii+606 pp. | MR | Zbl | MR | Zbl

[7] Y. Domar, “On the existence of a largest subharmonic minorant of a given function”, Ark. Mat., 3:5 (1958), 429–440 | DOI | MR | Zbl

[8] A. Borichev and H. Hedenmalm, “Completeness of translates in weighted spaces on the half-plane”, Acta Math., 174:1 (1995), 1–84 | DOI | MR | Zbl

[9] Y. Domar, “Uniform boundedness in families related to subharmonic functions”, J. London Math. Soc. (2), 38:3 (1988), 485–491 | DOI | MR | Zbl

[10] A. M. Gaĭsin and I. G. Kinzyabulatov, “A Levinson-Sjöberg type theorem. Applications”, Sb. Math., 199:7 (2008), 985–1007 | DOI | MR | Zbl

[11] E. M. Dyn'kin, “Growth of an analytic function near its set of singular points”, J. Soviet Math., 4:4 (1975), 438–440 | DOI | MR | Zbl

[12] E. M. Dyn'kin, “The pseudoanalytic extension”, J. Anal. Math., 60 (1993), 45–70 | DOI | MR | Zbl

[13] V. Matsaev and M. Sodin, “Asymptotics of Fourier and Laplace transforms in weighted spaces of analytic functions”, St. Petersburg Math. J., 14:4 (2003), 615–640 | MR | Zbl

[14] V. Matsaev, Uniqueness, completeness and compactness theorems related to classical quasianaliticity, Kandidat dissertation, Physics and Technology Institute of Low Temperatures of the Academy of Sciences of Ukr.SSR, Khar'kov, 1964 (Russian)

[15] E. M. Dyn'kin, “Functions with given estimate for $\partial f/\partial\overline z$, and N. Levinson's theorem”, Math. USSR-Sb., 18:2 (1972), 181–189 | DOI | MR | Zbl

[16] N. Nikolski, “Yngve Domar's forty years in harmonic analysis”, Festschrift in honour of Lennart Carleson and Yngve Domar (Uppsala 1993), Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist., 58, Uppsala Univ., Uppsala, 1995, 45–78 | MR | Zbl

[17] T. Bang, “The theory of metric spaces applied to infinitely differentiable functions”, Math. Scand., 1 (1953), 137–152 | DOI | MR | Zbl

[18] S. Mandelbrojt, Séries adhérentes. Régularisation des suites. Applications, Gauthier-Villars, Paris, 1952, xiv+277 pp. | MR | Zbl

[19] A. M. Gaisin, “Extremal problems in nonquasianalytic Carleman classes. Applications”, Sb. Math., 209:7 (2018), 958–984 | DOI | MR | Zbl

[20] A. M. Gaisin, “Dirichlet series with real coefficients that are unbounded on the positive half-axis”, Sb. Math., 198:6 (2007), 793–815 | DOI | MR | Zbl

[21] A. M. Gaisin, “Levinson's condition in the theory of entire functions: equivalent statements”, Math. Notes, 83:3 (2008), 317–326 | DOI | MR | Zbl

[22] P. Koosis, Introduction to $H^p$ spaces, With an appendix on Wolff's proof of the corona theorem, London Math. Soc. Lecture Note Ser., 40, Cambridge Univ. Press, Cambridge–New York, 1980, xv+376 pp. | MR | Zbl

[23] G. M. Fichtenholz, A course of calculus, v. II, 8th ed., Fizmatlit, Moscow, 2006, 864 pp. (Russian); German transl., G. M. Fichtenholz, Differential- und Integralrechnung, v. II, Hochschulbücher fur Math., 62, 10. Aufl., VEB Deutscher Verlag der Wissenschaften, Berlin, 1990, 732 pp. | MR | Zbl

[24] N. I. Akhiezer, Lectures on approximation theory, 2nd ed., Nauka, Moscow, 1965, 407 pp. (Russian) ; German transl., N. I. Achieser, Vorlesungen über Approximationstheorie, Math. Lehrbücher und Monogr., II, 2. verbesserte Aufl., Akademie-Verlag, Berlin, 1967, xiii+412 pp. | MR | Zbl | MR | Zbl