Mots-clés : nonquasianalytic Carleman class, Fourier transform
@article{SM_2023_214_5_a2,
author = {A. M. Gaisin and R. A. Gaisin},
title = {Levinson-type theorem and {Dyn'kin} problems},
journal = {Sbornik. Mathematics},
pages = {676--702},
year = {2023},
volume = {214},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_5_a2/}
}
A. M. Gaisin; R. A. Gaisin. Levinson-type theorem and Dyn'kin problems. Sbornik. Mathematics, Tome 214 (2023) no. 5, pp. 676-702. http://geodesic.mathdoc.fr/item/SM_2023_214_5_a2/
[1] N. Levinson, Gap and density theorems, Amer. Math. Soc. Colloq. Publ., 26, Amer. Math. Soc., New York, 1940, viii+246 pp. | MR | Zbl
[2] V. P. Gurarii, “On Levinson's theorem concerning normal families of analytic functions”, Investigations in linear operators and function theory, Pt. 1, Semin. Math., Springer, Boston, MA, 1972, 124–127 | DOI | MR | Zbl
[3] N. Sjöberg, “Sur les minorantes subharmoniques d'une function donée”, Comptes rendus du IX congres des mathématiciens scandinaves (Helsinki 1938), Helsingfors, 1939, 309–319 | Zbl
[4] T. Carleman, “Extension d'un théorème de Liouville”, Acta Math., 48:3–4 (1926), 363–366 | DOI | MR | Zbl
[5] F. Wolf, “On majorants of subharmonic and analytic functions”, Bull. Amer. Math. Soc., 48:12 (1942), 925–932 | DOI | MR | Zbl
[6] P. Koosis, The logarithmic integral, v. I, Cambridge Stud. Adv. Math., 12, Cambridge Univ. Press, Cambridge, 1988, xvi+606 pp. ; Corr. reprint of the 1988 original, 1998, xviii+606 pp. | MR | Zbl | MR | Zbl
[7] Y. Domar, “On the existence of a largest subharmonic minorant of a given function”, Ark. Mat., 3:5 (1958), 429–440 | DOI | MR | Zbl
[8] A. Borichev and H. Hedenmalm, “Completeness of translates in weighted spaces on the half-plane”, Acta Math., 174:1 (1995), 1–84 | DOI | MR | Zbl
[9] Y. Domar, “Uniform boundedness in families related to subharmonic functions”, J. London Math. Soc. (2), 38:3 (1988), 485–491 | DOI | MR | Zbl
[10] A. M. Gaĭsin and I. G. Kinzyabulatov, “A Levinson-Sjöberg type theorem. Applications”, Sb. Math., 199:7 (2008), 985–1007 | DOI | MR | Zbl
[11] E. M. Dyn'kin, “Growth of an analytic function near its set of singular points”, J. Soviet Math., 4:4 (1975), 438–440 | DOI | MR | Zbl
[12] E. M. Dyn'kin, “The pseudoanalytic extension”, J. Anal. Math., 60 (1993), 45–70 | DOI | MR | Zbl
[13] V. Matsaev and M. Sodin, “Asymptotics of Fourier and Laplace transforms in weighted spaces of analytic functions”, St. Petersburg Math. J., 14:4 (2003), 615–640 | MR | Zbl
[14] V. Matsaev, Uniqueness, completeness and compactness theorems related to classical quasianaliticity, Kandidat dissertation, Physics and Technology Institute of Low Temperatures of the Academy of Sciences of Ukr.SSR, Khar'kov, 1964 (Russian)
[15] E. M. Dyn'kin, “Functions with given estimate for $\partial f/\partial\overline z$, and N. Levinson's theorem”, Math. USSR-Sb., 18:2 (1972), 181–189 | DOI | MR | Zbl
[16] N. Nikolski, “Yngve Domar's forty years in harmonic analysis”, Festschrift in honour of Lennart Carleson and Yngve Domar (Uppsala 1993), Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist., 58, Uppsala Univ., Uppsala, 1995, 45–78 | MR | Zbl
[17] T. Bang, “The theory of metric spaces applied to infinitely differentiable functions”, Math. Scand., 1 (1953), 137–152 | DOI | MR | Zbl
[18] S. Mandelbrojt, Séries adhérentes. Régularisation des suites. Applications, Gauthier-Villars, Paris, 1952, xiv+277 pp. | MR | Zbl
[19] A. M. Gaisin, “Extremal problems in nonquasianalytic Carleman classes. Applications”, Sb. Math., 209:7 (2018), 958–984 | DOI | MR | Zbl
[20] A. M. Gaisin, “Dirichlet series with real coefficients that are unbounded on the positive half-axis”, Sb. Math., 198:6 (2007), 793–815 | DOI | MR | Zbl
[21] A. M. Gaisin, “Levinson's condition in the theory of entire functions: equivalent statements”, Math. Notes, 83:3 (2008), 317–326 | DOI | MR | Zbl
[22] P. Koosis, Introduction to $H^p$ spaces, With an appendix on Wolff's proof of the corona theorem, London Math. Soc. Lecture Note Ser., 40, Cambridge Univ. Press, Cambridge–New York, 1980, xv+376 pp. | MR | Zbl
[23] G. M. Fichtenholz, A course of calculus, v. II, 8th ed., Fizmatlit, Moscow, 2006, 864 pp. (Russian); German transl., G. M. Fichtenholz, Differential- und Integralrechnung, v. II, Hochschulbücher fur Math., 62, 10. Aufl., VEB Deutscher Verlag der Wissenschaften, Berlin, 1990, 732 pp. | MR | Zbl
[24] N. I. Akhiezer, Lectures on approximation theory, 2nd ed., Nauka, Moscow, 1965, 407 pp. (Russian) ; German transl., N. I. Achieser, Vorlesungen über Approximationstheorie, Math. Lehrbücher und Monogr., II, 2. verbesserte Aufl., Akademie-Verlag, Berlin, 1967, xiii+412 pp. | MR | Zbl | MR | Zbl