A refinement of Heath-Brown's theorem on quadratic forms
Sbornik. Mathematics, Tome 214 (2023) no. 5, pp. 627-675 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In his paper from 1996 on quadratic forms Heath-Brown developed a version of the circle method to count points in the intersection of an unbounded quadric with a lattice of small period, when each point is assigned a weight, and approximated this quantity by the integral of the weight function against a measure on the quadric. The weight function is assumed to be $C_0^\infty$-smooth and vanish near the singularity of the quadric. In our work we allow the weight function to be finitely smooth, not to vanish at the singularity and have an explicit decay at infinity. The paper uses only elementary number theory and is available to readers with no number-theoretic background. Bibliography: 15 titles.
Keywords: circle method, quadratic form, summation over quadric.
Mots-clés : quadric
@article{SM_2023_214_5_a1,
     author = {S. G. Vl\u{a}du\c{t} and A. V. Dymov and S. B. Kuksin and A. Maiocchi},
     title = {A~refinement of {Heath-Brown's} theorem on quadratic forms},
     journal = {Sbornik. Mathematics},
     pages = {627--675},
     year = {2023},
     volume = {214},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_5_a1/}
}
TY  - JOUR
AU  - S. G. Vlăduţ
AU  - A. V. Dymov
AU  - S. B. Kuksin
AU  - A. Maiocchi
TI  - A refinement of Heath-Brown's theorem on quadratic forms
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 627
EP  - 675
VL  - 214
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_5_a1/
LA  - en
ID  - SM_2023_214_5_a1
ER  - 
%0 Journal Article
%A S. G. Vlăduţ
%A A. V. Dymov
%A S. B. Kuksin
%A A. Maiocchi
%T A refinement of Heath-Brown's theorem on quadratic forms
%J Sbornik. Mathematics
%D 2023
%P 627-675
%V 214
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2023_214_5_a1/
%G en
%F SM_2023_214_5_a1
S. G. Vlăduţ; A. V. Dymov; S. B. Kuksin; A. Maiocchi. A refinement of Heath-Brown's theorem on quadratic forms. Sbornik. Mathematics, Tome 214 (2023) no. 5, pp. 627-675. http://geodesic.mathdoc.fr/item/SM_2023_214_5_a1/

[1] D. R. Heath-Brown, “A new form of the circle method, and its application to quadratic forms”, J. Reine Angew. Math., 1996:481 (1996), 149–206 | DOI | MR | Zbl

[2] W. Duke, J. Friedlander and H. Iwaniec, “Bounds for automorphic $L$-function”, Invent. Math., 112:1 (1993), 1–8 | DOI | MR | Zbl

[3] H. Iwaniec, “The circle method and the Fourier coefficients of modular forms”, Number theory and related topics (Bombay 1988), Tata Inst. Fund. Res. Stud. Math., 12, Tata Inst. Fund. Res., Bombay, 1989, 47–55 | MR | Zbl

[4] J.-P. Serre, Cours d'arithmétique, Le Mathématicien, 2, Presses Univ. de France, Paris, 1970, 188 pp. ; English transl., J.-P. Serre, A course in arithmetic, Grad. Texts in Math., 7, Springer-Verlag, New York–Heidelberg, 1973, viii+115 pp. | MR | Zbl | DOI | MR | Zbl

[5] A. A. Karatsuba, Basic analytic number theory, 2nd ed., Nauka, Moscow, 1983, 240 pp. (Russian) ; English transl., Reprint of the 1st ed., Springer-Verlag, Berlin, 2012, xiii+222 pp. | MR | DOI | MR | Zbl

[6] A. Dymov, S. Kuksin, A. Maiocchi and S. Vlăduţ, “The large-period limit for equations of discrete turbulence”, Ann. Henri Poincaré, 24:11 (2023), 3685–3739 ; arXiv: 2104.11967 | DOI | MR | Zbl

[7] T. Buckmaster, P. Germain, Z. Hani and J. Shatah, “Effective dynamics of the nonlinear Schrödinger equation on large domains”, Comm. Pure Appl. Math., 71:7 (2018), 1407–1460 | DOI | MR | Zbl

[8] H. L. Eliasson, B. Grébert and S. B. Kuksin, “KAM for the nonlinear beam equation”, Geom. Funct. Anal., 26:6 (2016), 1588–1715 | DOI | MR | Zbl

[9] J. R. Getz, “Secondary terms in asymptotics for the number of zeros of quadratic forms over number fields”, J. Lond. Math. Soc. (2), 98:2 (2018), 275–305 | DOI | MR | Zbl

[10] T. H. Tran, Secondary terms in asymptotics for the number of zeros of quadratic forms, arXiv: 1910.14530

[11] A. Dymov and S. Kuksin, “Formal expansions in stochastic model for wave turbulence. 1: Kinetic limit”, Comm. Math. Phys., 382:2 (2021), 951–1014 | DOI | MR | Zbl

[12] I. Chavel, Riemannian geometry. A modern introduction, Cambridge Stud. Adv. Math., 98, 2nd ed., Cambridge Univ. Press, Cambridge, 2006, xvi+471 pp. | DOI | MR | Zbl

[13] A. Dymov, S. Kuksin, A. Maiocchi and S. Vlăduţ, Some remarks on Heath-Brown's theorem on quadratic forms, arXiv: 2104.11794

[14] A. I. Khinchin, Mathematical foundations of statistical mechanics, Dover Publications, Inc., New York, NY, 1949, viii+179 pp. | MR | Zbl

[15] B. J. Birch, “Forms in many variables”, Proc. Roy. Soc. London Ser. A, 265:1321 (1962), 245–263 | DOI | MR | Zbl