Mots-clés : quadric
@article{SM_2023_214_5_a1,
author = {S. G. Vl\u{a}du\c{t} and A. V. Dymov and S. B. Kuksin and A. Maiocchi},
title = {A~refinement of {Heath-Brown's} theorem on quadratic forms},
journal = {Sbornik. Mathematics},
pages = {627--675},
year = {2023},
volume = {214},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_5_a1/}
}
TY - JOUR AU - S. G. Vlăduţ AU - A. V. Dymov AU - S. B. Kuksin AU - A. Maiocchi TI - A refinement of Heath-Brown's theorem on quadratic forms JO - Sbornik. Mathematics PY - 2023 SP - 627 EP - 675 VL - 214 IS - 5 UR - http://geodesic.mathdoc.fr/item/SM_2023_214_5_a1/ LA - en ID - SM_2023_214_5_a1 ER -
S. G. Vlăduţ; A. V. Dymov; S. B. Kuksin; A. Maiocchi. A refinement of Heath-Brown's theorem on quadratic forms. Sbornik. Mathematics, Tome 214 (2023) no. 5, pp. 627-675. http://geodesic.mathdoc.fr/item/SM_2023_214_5_a1/
[1] D. R. Heath-Brown, “A new form of the circle method, and its application to quadratic forms”, J. Reine Angew. Math., 1996:481 (1996), 149–206 | DOI | MR | Zbl
[2] W. Duke, J. Friedlander and H. Iwaniec, “Bounds for automorphic $L$-function”, Invent. Math., 112:1 (1993), 1–8 | DOI | MR | Zbl
[3] H. Iwaniec, “The circle method and the Fourier coefficients of modular forms”, Number theory and related topics (Bombay 1988), Tata Inst. Fund. Res. Stud. Math., 12, Tata Inst. Fund. Res., Bombay, 1989, 47–55 | MR | Zbl
[4] J.-P. Serre, Cours d'arithmétique, Le Mathématicien, 2, Presses Univ. de France, Paris, 1970, 188 pp. ; English transl., J.-P. Serre, A course in arithmetic, Grad. Texts in Math., 7, Springer-Verlag, New York–Heidelberg, 1973, viii+115 pp. | MR | Zbl | DOI | MR | Zbl
[5] A. A. Karatsuba, Basic analytic number theory, 2nd ed., Nauka, Moscow, 1983, 240 pp. (Russian) ; English transl., Reprint of the 1st ed., Springer-Verlag, Berlin, 2012, xiii+222 pp. | MR | DOI | MR | Zbl
[6] A. Dymov, S. Kuksin, A. Maiocchi and S. Vlăduţ, “The large-period limit for equations of discrete turbulence”, Ann. Henri Poincaré, 24:11 (2023), 3685–3739 ; arXiv: 2104.11967 | DOI | MR | Zbl
[7] T. Buckmaster, P. Germain, Z. Hani and J. Shatah, “Effective dynamics of the nonlinear Schrödinger equation on large domains”, Comm. Pure Appl. Math., 71:7 (2018), 1407–1460 | DOI | MR | Zbl
[8] H. L. Eliasson, B. Grébert and S. B. Kuksin, “KAM for the nonlinear beam equation”, Geom. Funct. Anal., 26:6 (2016), 1588–1715 | DOI | MR | Zbl
[9] J. R. Getz, “Secondary terms in asymptotics for the number of zeros of quadratic forms over number fields”, J. Lond. Math. Soc. (2), 98:2 (2018), 275–305 | DOI | MR | Zbl
[10] T. H. Tran, Secondary terms in asymptotics for the number of zeros of quadratic forms, arXiv: 1910.14530
[11] A. Dymov and S. Kuksin, “Formal expansions in stochastic model for wave turbulence. 1: Kinetic limit”, Comm. Math. Phys., 382:2 (2021), 951–1014 | DOI | MR | Zbl
[12] I. Chavel, Riemannian geometry. A modern introduction, Cambridge Stud. Adv. Math., 98, 2nd ed., Cambridge Univ. Press, Cambridge, 2006, xvi+471 pp. | DOI | MR | Zbl
[13] A. Dymov, S. Kuksin, A. Maiocchi and S. Vlăduţ, Some remarks on Heath-Brown's theorem on quadratic forms, arXiv: 2104.11794
[14] A. I. Khinchin, Mathematical foundations of statistical mechanics, Dover Publications, Inc., New York, NY, 1949, viii+179 pp. | MR | Zbl
[15] B. J. Birch, “Forms in many variables”, Proc. Roy. Soc. London Ser. A, 265:1321 (1962), 245–263 | DOI | MR | Zbl