Arf invariants of codimension one in a Wall group of the dihedral group
Sbornik. Mathematics, Tome 214 (2023) no. 5, pp. 613-626 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An element $x$ is specified in the Wall group $L_3(D_3)$ of the dihedral group of order $8$ with trivial orientation character, such that $x$ is an element of the third type in the sense of Kharshiladze with respect to any system of one-sided submanifolds of codimension $1$ for which the splitting obstruction group along the first submanifold is isomorphic to $LN_1(\mathbb Z/2\oplus \mathbb Z/2\to D_3)$. The element $x$ is not realisable as an obstruction to surgery on a closed $\mathrm{PL}$-manifold. It is also proved that the unique nontrivial element of the group $LN_3(\mathbb Z/2\oplus \mathbb Z/2\to D_3^-)$ can be detected using the Hasse-Witt $Wh_2$-torsion. Bibliography: 25 titles.
Keywords: Browder-Livesay groups, Wall groups, one-sided submanifolds, splitting obstructions
Mots-clés : codimension-one Arf invariant, Hasse-Witt torsion.
@article{SM_2023_214_5_a0,
     author = {P. M. Akhmet'ev and Yu. V. Muranov},
     title = {Arf invariants of codimension one in {a~Wall} group of the dihedral group},
     journal = {Sbornik. Mathematics},
     pages = {613--626},
     year = {2023},
     volume = {214},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_5_a0/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
AU  - Yu. V. Muranov
TI  - Arf invariants of codimension one in a Wall group of the dihedral group
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 613
EP  - 626
VL  - 214
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_5_a0/
LA  - en
ID  - SM_2023_214_5_a0
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%A Yu. V. Muranov
%T Arf invariants of codimension one in a Wall group of the dihedral group
%J Sbornik. Mathematics
%D 2023
%P 613-626
%V 214
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2023_214_5_a0/
%G en
%F SM_2023_214_5_a0
P. M. Akhmet'ev; Yu. V. Muranov. Arf invariants of codimension one in a Wall group of the dihedral group. Sbornik. Mathematics, Tome 214 (2023) no. 5, pp. 613-626. http://geodesic.mathdoc.fr/item/SM_2023_214_5_a0/

[1] W. Browder, “The Kervaire invariant of framed manifolds and its generalization”, Ann. of Math. (2), 90 (1969), 157–186 | DOI | MR | Zbl

[2] V. P. Snaith, Stable homotopy around the Arf-Kervaire invariant, Progr. Math., 273, Birkhäuser Verlag, Basel, 2009, xiv+239 pp. | DOI | MR | Zbl

[3] C. T. C. Wall, Surgery on compact manifolds, Math. Surveys Monogr., 69, 2nd ed., Amer. Math. Soc., Providence, RI, 1999, xvi+302 pp. | DOI | MR | Zbl

[4] A. Ranicki, Exact sequences in the algebraic theory of surgery, Math. Notes, 26, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1981, xvii+864 pp. | MR | Zbl

[5] A. F. Kharshiladze, “Surgery on manifolds with finite fundamental groups”, Russian Math. Surveys, 42:4 (1987), 65–103 | DOI | MR | Zbl

[6] Yu. V. Muranov, “The splitting problem”, Proc. Steklov Inst. Math., 212 (1996), 115–137 | MR | Zbl

[7] C. T. C. Wall, “Formulae for surgery obstructions”, Topology, 15:3 (1976), 189–210 | DOI | MR | Zbl

[8] W. Browder and G. R. Livesay, “Fixed point free involutions on homotopy spheres”, Bull. Amer. Math. Soc., 73:2 (1967), 242–245 | DOI | MR | Zbl

[9] S. López de Medrano, Involutions on manifolds, Ergeb. Math. Grenzgeb., 59, Springer-Verlag, New York–Heidelberg, 1971, ix+103 pp. | DOI | MR | Zbl

[10] S. E. Cappell and J. L. Shaneson, “Pseudo-free actions. I”, Algebraic topology, Aarhus 1978 (Univ. Aarhus, Aarhus 1978), Lecture Notes in Math., 763, Springer, Berlin, 1979, 395–447 | DOI | MR | Zbl

[11] I. Hambleton, “Projective surgery obstructions on closed manifolds”, Algebraic K-theory, Part II (Oberwolfach 1980), Lecture Notes in Math., 967, Springer, Berlin–New York, 1982, 101–131 | DOI | MR | Zbl

[12] A. F. Kharshiladze, “Iterated Browder-Livesay invariants and the Uzing problem”, Math. Notes, 41:4 (1987), 312–315 | DOI | MR | Zbl

[13] A. F. Kharshiladze, “Hermitian K-theory and quadratic extensions of rings”, Trans. Moscow Math. Soc., 1982:1 (1982), 1–37 | MR | Zbl

[14] Yu. V. Muranov and A. F. Kharshiladze, “Browder-Livesay groups for Abelian 2-groups”, Math. USSR-Sb., 70:2 (1991), 499–540 | DOI | MR | Zbl

[15] C. T. C. Wall, “Foundations of algebraic L-theory”, Algebraic K-theory. III. Hermitian K-theory and geometric applications (Battelle Memorial Inst., Seattle, WA 1972), Lecture Notes in Math., 343, Springer, Berlin, 1973, 266–300 | DOI | MR | Zbl

[16] C. T. C. Wall, “On the axiomatic foundations of the theory of Hermitian forms”, Proc. Cambridge Philos. Soc., 67:2 (1970), 243–250 | DOI | MR | Zbl

[17] C. T. C. Wall, “Classification of Hermitian Forms. VI. Group rings”, Ann. of Math. (2), 103:1 (1976), 1–80 | DOI | MR | Zbl

[18] A. Ranicki, “The $L$-theory of twisted quadratic extensions”, Canad. J. Math., 39:2 (1987), 345–364 | DOI | MR | Zbl

[19] A. F. Kharshiladze, “Obstructions to surgery for the group $(\pi\times Z_2)$”, Math. Notes, 16:5 (1974), 1085–1090 | DOI | MR | Zbl

[20] Yu. V. Muranov and D. Repovš, “Surgery of closed manifolds with dihedral fundamental group”, Math. Notes, 64:2 (1998), 202–212 | DOI | MR | Zbl

[21] C. T. C. Wall, “Some $L$ groups of finite groups”, Bull. Amer. Math. Soc., 79:3 (1973), 526–529 | DOI | MR | Zbl

[22] Yu. V. Muranov, “The Browder-Livesay groups of the dihedral group”, Russian Math. Surveys, 47:2 (1992), 231–232 | DOI | MR | Zbl

[23] P. M. Akhmet'ev, “$K_2$ for the simplest integral group rings and topological applications”, Sb. Math., 194:1 (2003), 21–29 | DOI | MR | Zbl

[24] Zhengguo Yang, Guoping Tang and Hang Liu, “On the structure of $K_2(\mathbb Z[C_2 \times C_2])$”, J. Pure Appl. Algebra, 221:4 (2017), 773–779 | DOI | MR | Zbl

[25] Wu-Chung Hsiang and R, W. Sharpe, “Parametrized surgery and isotopy”, Pacific J. Math., 67:2 (1976), 401–459 | DOI | MR | Zbl