Mots-clés : codimension-one Arf invariant, Hasse-Witt torsion.
@article{SM_2023_214_5_a0,
author = {P. M. Akhmet'ev and Yu. V. Muranov},
title = {Arf invariants of codimension one in {a~Wall} group of the dihedral group},
journal = {Sbornik. Mathematics},
pages = {613--626},
year = {2023},
volume = {214},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_5_a0/}
}
P. M. Akhmet'ev; Yu. V. Muranov. Arf invariants of codimension one in a Wall group of the dihedral group. Sbornik. Mathematics, Tome 214 (2023) no. 5, pp. 613-626. http://geodesic.mathdoc.fr/item/SM_2023_214_5_a0/
[1] W. Browder, “The Kervaire invariant of framed manifolds and its generalization”, Ann. of Math. (2), 90 (1969), 157–186 | DOI | MR | Zbl
[2] V. P. Snaith, Stable homotopy around the Arf-Kervaire invariant, Progr. Math., 273, Birkhäuser Verlag, Basel, 2009, xiv+239 pp. | DOI | MR | Zbl
[3] C. T. C. Wall, Surgery on compact manifolds, Math. Surveys Monogr., 69, 2nd ed., Amer. Math. Soc., Providence, RI, 1999, xvi+302 pp. | DOI | MR | Zbl
[4] A. Ranicki, Exact sequences in the algebraic theory of surgery, Math. Notes, 26, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1981, xvii+864 pp. | MR | Zbl
[5] A. F. Kharshiladze, “Surgery on manifolds with finite fundamental groups”, Russian Math. Surveys, 42:4 (1987), 65–103 | DOI | MR | Zbl
[6] Yu. V. Muranov, “The splitting problem”, Proc. Steklov Inst. Math., 212 (1996), 115–137 | MR | Zbl
[7] C. T. C. Wall, “Formulae for surgery obstructions”, Topology, 15:3 (1976), 189–210 | DOI | MR | Zbl
[8] W. Browder and G. R. Livesay, “Fixed point free involutions on homotopy spheres”, Bull. Amer. Math. Soc., 73:2 (1967), 242–245 | DOI | MR | Zbl
[9] S. López de Medrano, Involutions on manifolds, Ergeb. Math. Grenzgeb., 59, Springer-Verlag, New York–Heidelberg, 1971, ix+103 pp. | DOI | MR | Zbl
[10] S. E. Cappell and J. L. Shaneson, “Pseudo-free actions. I”, Algebraic topology, Aarhus 1978 (Univ. Aarhus, Aarhus 1978), Lecture Notes in Math., 763, Springer, Berlin, 1979, 395–447 | DOI | MR | Zbl
[11] I. Hambleton, “Projective surgery obstructions on closed manifolds”, Algebraic K-theory, Part II (Oberwolfach 1980), Lecture Notes in Math., 967, Springer, Berlin–New York, 1982, 101–131 | DOI | MR | Zbl
[12] A. F. Kharshiladze, “Iterated Browder-Livesay invariants and the Uzing problem”, Math. Notes, 41:4 (1987), 312–315 | DOI | MR | Zbl
[13] A. F. Kharshiladze, “Hermitian K-theory and quadratic extensions of rings”, Trans. Moscow Math. Soc., 1982:1 (1982), 1–37 | MR | Zbl
[14] Yu. V. Muranov and A. F. Kharshiladze, “Browder-Livesay groups for Abelian 2-groups”, Math. USSR-Sb., 70:2 (1991), 499–540 | DOI | MR | Zbl
[15] C. T. C. Wall, “Foundations of algebraic L-theory”, Algebraic K-theory. III. Hermitian K-theory and geometric applications (Battelle Memorial Inst., Seattle, WA 1972), Lecture Notes in Math., 343, Springer, Berlin, 1973, 266–300 | DOI | MR | Zbl
[16] C. T. C. Wall, “On the axiomatic foundations of the theory of Hermitian forms”, Proc. Cambridge Philos. Soc., 67:2 (1970), 243–250 | DOI | MR | Zbl
[17] C. T. C. Wall, “Classification of Hermitian Forms. VI. Group rings”, Ann. of Math. (2), 103:1 (1976), 1–80 | DOI | MR | Zbl
[18] A. Ranicki, “The $L$-theory of twisted quadratic extensions”, Canad. J. Math., 39:2 (1987), 345–364 | DOI | MR | Zbl
[19] A. F. Kharshiladze, “Obstructions to surgery for the group $(\pi\times Z_2)$”, Math. Notes, 16:5 (1974), 1085–1090 | DOI | MR | Zbl
[20] Yu. V. Muranov and D. Repovš, “Surgery of closed manifolds with dihedral fundamental group”, Math. Notes, 64:2 (1998), 202–212 | DOI | MR | Zbl
[21] C. T. C. Wall, “Some $L$ groups of finite groups”, Bull. Amer. Math. Soc., 79:3 (1973), 526–529 | DOI | MR | Zbl
[22] Yu. V. Muranov, “The Browder-Livesay groups of the dihedral group”, Russian Math. Surveys, 47:2 (1992), 231–232 | DOI | MR | Zbl
[23] P. M. Akhmet'ev, “$K_2$ for the simplest integral group rings and topological applications”, Sb. Math., 194:1 (2003), 21–29 | DOI | MR | Zbl
[24] Zhengguo Yang, Guoping Tang and Hang Liu, “On the structure of $K_2(\mathbb Z[C_2 \times C_2])$”, J. Pure Appl. Algebra, 221:4 (2017), 773–779 | DOI | MR | Zbl
[25] Wu-Chung Hsiang and R, W. Sharpe, “Parametrized surgery and isotopy”, Pacific J. Math., 67:2 (1976), 401–459 | DOI | MR | Zbl