Short $\mathrm{SL}_2$-structures on simple Lie algebras
Sbornik. Mathematics, Tome 214 (2023) no. 4, pp. 567-612

Voir la notice de l'article provenant de la source Math-Net.Ru

In Vinberg's works certain non-Abelian gradings of simple Lie algebras were introduced and investigated, namely, short $\mathrm{SO}_3$- and $\mathrm{SL}_3$-structures. We investigate a different kind of these, short $\mathrm{SL}_2$-structures. The main results refer to the one-to-one correspondence between such structures and certain special Jordan algebras. Bibliography: 8 titles.
Keywords: structured Lie algebras, graded Lie algebras.
Mots-clés : Jordan algebras
@article{SM_2023_214_4_a4,
     author = {R. O. Stasenko},
     title = {Short $\mathrm{SL}_2$-structures on simple {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {567--612},
     publisher = {mathdoc},
     volume = {214},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_4_a4/}
}
TY  - JOUR
AU  - R. O. Stasenko
TI  - Short $\mathrm{SL}_2$-structures on simple Lie algebras
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 567
EP  - 612
VL  - 214
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_4_a4/
LA  - en
ID  - SM_2023_214_4_a4
ER  - 
%0 Journal Article
%A R. O. Stasenko
%T Short $\mathrm{SL}_2$-structures on simple Lie algebras
%J Sbornik. Mathematics
%D 2023
%P 567-612
%V 214
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2023_214_4_a4/
%G en
%F SM_2023_214_4_a4
R. O. Stasenko. Short $\mathrm{SL}_2$-structures on simple Lie algebras. Sbornik. Mathematics, Tome 214 (2023) no. 4, pp. 567-612. http://geodesic.mathdoc.fr/item/SM_2023_214_4_a4/