Short $\mathrm{SL}_2$-structures on simple Lie algebras
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 4, pp. 567-612
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In Vinberg's works certain non-Abelian gradings of simple Lie algebras were introduced and investigated, namely, short $\mathrm{SO}_3$- and $\mathrm{SL}_3$-structures. We investigate a different kind of these, short $\mathrm{SL}_2$-structures. The main results refer to the one-to-one correspondence between such structures and certain special Jordan algebras. 
Bibliography: 8 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
structured Lie algebras, graded Lie algebras.
Mots-clés : Jordan algebras
                    
                  
                
                
                Mots-clés : Jordan algebras
@article{SM_2023_214_4_a4,
     author = {R. O. Stasenko},
     title = {Short $\mathrm{SL}_2$-structures on simple {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {567--612},
     publisher = {mathdoc},
     volume = {214},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_4_a4/}
}
                      
                      
                    R. O. Stasenko. Short $\mathrm{SL}_2$-structures on simple Lie algebras. Sbornik. Mathematics, Tome 214 (2023) no. 4, pp. 567-612. http://geodesic.mathdoc.fr/item/SM_2023_214_4_a4/
                  
                