Short $\mathrm{SL}_2$-structures on simple Lie algebras
Sbornik. Mathematics, Tome 214 (2023) no. 4, pp. 567-612 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In Vinberg's works certain non-Abelian gradings of simple Lie algebras were introduced and investigated, namely, short $\mathrm{SO}_3$- and $\mathrm{SL}_3$-structures. We investigate a different kind of these, short $\mathrm{SL}_2$-structures. The main results refer to the one-to-one correspondence between such structures and certain special Jordan algebras. Bibliography: 8 titles.
Keywords: structured Lie algebras, graded Lie algebras.
Mots-clés : Jordan algebras
@article{SM_2023_214_4_a4,
     author = {R. O. Stasenko},
     title = {Short $\mathrm{SL}_2$-structures on simple {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {567--612},
     year = {2023},
     volume = {214},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_4_a4/}
}
TY  - JOUR
AU  - R. O. Stasenko
TI  - Short $\mathrm{SL}_2$-structures on simple Lie algebras
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 567
EP  - 612
VL  - 214
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_4_a4/
LA  - en
ID  - SM_2023_214_4_a4
ER  - 
%0 Journal Article
%A R. O. Stasenko
%T Short $\mathrm{SL}_2$-structures on simple Lie algebras
%J Sbornik. Mathematics
%D 2023
%P 567-612
%V 214
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2023_214_4_a4/
%G en
%F SM_2023_214_4_a4
R. O. Stasenko. Short $\mathrm{SL}_2$-structures on simple Lie algebras. Sbornik. Mathematics, Tome 214 (2023) no. 4, pp. 567-612. http://geodesic.mathdoc.fr/item/SM_2023_214_4_a4/

[1] E. B. Vinberg, “Non-abelian gradings of Lie algebras”, 50th seminar “Sophus Lie”, Banach Center Publ., 113, Polish Acad. Sci. Inst. Math., Warsaw, 2017, 19–38 | MR | Zbl

[2] E. B. Vinberg, “Short $\operatorname{SO}_3$-structures on simple Lie algebras and associated quasielliptic planes”, Lie groups and invariant theory, Amer. Math. Soc. Transl. Ser. 2, 213, Adv. Math. Sci., 56, Amer. Math. Soc., Providence, RI, 2005, 243–270 | DOI | MR | Zbl

[3] A. A. Albert, “A structure theory for Jordan algebras”, Ann. of Math. (2), 48:3 (1947), 546–567 | DOI | MR | Zbl

[4] N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ., 39, Amer. Math. Soc., Providence, RI, 1968, x+453 pp. | MR | Zbl

[5] A. L. Onishchik, E. B. Vinberg and V. V. Gorbatsevich, “Structure of Lie groups and Lie algebras”, Lie groups and Lie algebras III, Sovr. Probl. Mat. Fund. Napravl., 41, VINITI, Moscow, 1990, 5–253 ; English transl. in Encyclopaedia Math. Sci., 41, Springer-Verlag, Berlin, 1994, 1–248 | MR | Zbl | MR | Zbl

[6] L. Conlon, “A class of variationally complete representations”, J. Differential Geometry, 7:1–2 (1972), 149–160 | DOI | MR | Zbl

[7] D. I. Panyushev, “The exterior algebra and “spin” of an orthogonal $\mathfrak{g}$-module”, Transform. Groups, 6:4 (2001), 371–396 | DOI | MR | Zbl

[8] V. G. Kac, “Some remarks on nilpotent orbits”, J. Algebra, 64:1 (1980), 190–213 | DOI | MR | Zbl