Mots-clés : Jordan algebras
@article{SM_2023_214_4_a4,
author = {R. O. Stasenko},
title = {Short $\mathrm{SL}_2$-structures on simple {Lie} algebras},
journal = {Sbornik. Mathematics},
pages = {567--612},
year = {2023},
volume = {214},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_4_a4/}
}
R. O. Stasenko. Short $\mathrm{SL}_2$-structures on simple Lie algebras. Sbornik. Mathematics, Tome 214 (2023) no. 4, pp. 567-612. http://geodesic.mathdoc.fr/item/SM_2023_214_4_a4/
[1] E. B. Vinberg, “Non-abelian gradings of Lie algebras”, 50th seminar “Sophus Lie”, Banach Center Publ., 113, Polish Acad. Sci. Inst. Math., Warsaw, 2017, 19–38 | MR | Zbl
[2] E. B. Vinberg, “Short $\operatorname{SO}_3$-structures on simple Lie algebras and associated quasielliptic planes”, Lie groups and invariant theory, Amer. Math. Soc. Transl. Ser. 2, 213, Adv. Math. Sci., 56, Amer. Math. Soc., Providence, RI, 2005, 243–270 | DOI | MR | Zbl
[3] A. A. Albert, “A structure theory for Jordan algebras”, Ann. of Math. (2), 48:3 (1947), 546–567 | DOI | MR | Zbl
[4] N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ., 39, Amer. Math. Soc., Providence, RI, 1968, x+453 pp. | MR | Zbl
[5] A. L. Onishchik, E. B. Vinberg and V. V. Gorbatsevich, “Structure of Lie groups and Lie algebras”, Lie groups and Lie algebras III, Sovr. Probl. Mat. Fund. Napravl., 41, VINITI, Moscow, 1990, 5–253 ; English transl. in Encyclopaedia Math. Sci., 41, Springer-Verlag, Berlin, 1994, 1–248 | MR | Zbl | MR | Zbl
[6] L. Conlon, “A class of variationally complete representations”, J. Differential Geometry, 7:1–2 (1972), 149–160 | DOI | MR | Zbl
[7] D. I. Panyushev, “The exterior algebra and “spin” of an orthogonal $\mathfrak{g}$-module”, Transform. Groups, 6:4 (2001), 371–396 | DOI | MR | Zbl
[8] V. G. Kac, “Some remarks on nilpotent orbits”, J. Algebra, 64:1 (1980), 190–213 | DOI | MR | Zbl