Explicit form of fundamental solutions to certain elliptic equations and associated $B$- and $C$-capacities
Sbornik. Mathematics, Tome 214 (2023) no. 4, pp. 550-566 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main aim of this paper is to study the geometric and metric properties of $B$- and $C$-capacities related to problems of uniform approximation of functions by solutions of homogeneous second-order elliptic equations with constant complex coefficients on compact subsets of Euclidean spaces. In the harmonic case this problem is well known, and it was studied in detail in the framework of classical potential theory in the first half of the 20th century. For a wide class of equations mentioned above, we obtain two-sided estimates between the corresponding $B_+$- and $C_+$-capacities (defined in terms of potentials of positive measures) and the harmonic capacity in the same dimension. Our research method is based on new simple explicit formulae obtained for the fundamental solutions of the equations under consideration. Bibliography: 12 titles.
Keywords: elliptic quadratic form, homogeneous second-order elliptic equation, fundamental solution, capacity, Calderon-Zygmund kernel
Mots-clés : Fourier transform.
@article{SM_2023_214_4_a3,
     author = {P. V. Paramonov and K. Yu. Fedorovskiy},
     title = {Explicit form of fundamental solutions to certain elliptic equations and associated $B$- and $C$-capacities},
     journal = {Sbornik. Mathematics},
     pages = {550--566},
     year = {2023},
     volume = {214},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_4_a3/}
}
TY  - JOUR
AU  - P. V. Paramonov
AU  - K. Yu. Fedorovskiy
TI  - Explicit form of fundamental solutions to certain elliptic equations and associated $B$- and $C$-capacities
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 550
EP  - 566
VL  - 214
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_4_a3/
LA  - en
ID  - SM_2023_214_4_a3
ER  - 
%0 Journal Article
%A P. V. Paramonov
%A K. Yu. Fedorovskiy
%T Explicit form of fundamental solutions to certain elliptic equations and associated $B$- and $C$-capacities
%J Sbornik. Mathematics
%D 2023
%P 550-566
%V 214
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2023_214_4_a3/
%G en
%F SM_2023_214_4_a3
P. V. Paramonov; K. Yu. Fedorovskiy. Explicit form of fundamental solutions to certain elliptic equations and associated $B$- and $C$-capacities. Sbornik. Mathematics, Tome 214 (2023) no. 4, pp. 550-566. http://geodesic.mathdoc.fr/item/SM_2023_214_4_a3/

[1] M. Ya. Mazalov, “A criterion for uniform approximability of individual functions by solutions of second-order homogeneous elliptic equations with constant complex coefficients”, Mat. Sb., 211:9 (2020), 60–104 ; English transl. in Sb. Math., 211:9 (2020), 1267–1309 | DOI | MR | Zbl | DOI

[2] M. V. Keldyš (Keldysh), “On the solvability and stability of the Dirichlet problem”, Uspekhi Mat. Nauk, 1941, no. 8, 171–231 ; English transl. in Amer. Math. Soc. Transl. Ser. 2, 51, Amer. Math. Soc., Providence, RI, 1966, 1–73 | MR | Zbl | DOI

[3] N. S. Landkof, Foundations of modern potential theory, Nauka, Moscow, 1966, 515 pp. ; English transl., Grundlehren Math. Wiss., 180, Springer-Verlag, New York–Heidelberg, 1972, x+424 pp. | MR | Zbl | MR | Zbl

[4] P. V. Paramonov, “Uniform approximation of functions by solutions of strongly elliptic equations of second order on compact subsets of $\mathbb R^2$”, Mat. Sb., 212:12 (2021), 77–94 ; English transl. in Sb. Math., 212:12 (2021), 1730–1745 | DOI | MR | Zbl | DOI

[5] L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983, ix+391 pp. | DOI | MR | Zbl

[6] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge Univ. Press, Cambridge, 1985, xiii+561 pp. | DOI | MR | Zbl

[7] M. Ya. Mazalov, P. V. Paramonov and K. Yu. Fedorovskiy, “Conditions for $C^m$-approximability of functions by solutions of elliptic equations”, Uspekhi Mat. Nauk, 67:6(408) (2012), 53–100 ; English transl. in Russian Math. Surveys, 67:6 (2012), 1023–1068 | DOI | MR | Zbl | DOI

[8] A. O. Bagapsh, M. Ya. Mazalov and K. Yu. Fedorovskiy, “On the Dirichlet problem for not strongly elliptic second-order equations”, Uspekhi Mat. Nauk, 77:2(464) (2022), 197–198 ; English transl. in Russian Math. Surveys, 77:2 (2022), 372–374 | DOI | MR | Zbl | DOI

[9] R. Harvey and J. C. Polking, “A notion of capacity which characterizes removable singularities”, Trans. Amer. Math. Soc., 169 (1972), 183–195 | DOI | MR | Zbl

[10] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970, xiv+290 pp. | DOI | MR | Zbl

[11] M. Ya. Mazalov, “A criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations”, Mat. Sb., 199:1 (2008), 15–46 ; English transl. in Sb. Math., 199:1 (2008), 13–44 | DOI | MR | Zbl | DOI

[12] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 4th ed., Fizmatgiz, Moscow, 1963, 1100 pp. ; English transl., 4th ed., Academic Press, New York–London, 1965, xlv+1086 pp. | MR | Zbl | MR | Zbl