Mots-clés : Fourier transform.
@article{SM_2023_214_4_a3,
author = {P. V. Paramonov and K. Yu. Fedorovskiy},
title = {Explicit form of fundamental solutions to certain elliptic equations and associated $B$- and $C$-capacities},
journal = {Sbornik. Mathematics},
pages = {550--566},
year = {2023},
volume = {214},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_4_a3/}
}
TY - JOUR AU - P. V. Paramonov AU - K. Yu. Fedorovskiy TI - Explicit form of fundamental solutions to certain elliptic equations and associated $B$- and $C$-capacities JO - Sbornik. Mathematics PY - 2023 SP - 550 EP - 566 VL - 214 IS - 4 UR - http://geodesic.mathdoc.fr/item/SM_2023_214_4_a3/ LA - en ID - SM_2023_214_4_a3 ER -
%0 Journal Article %A P. V. Paramonov %A K. Yu. Fedorovskiy %T Explicit form of fundamental solutions to certain elliptic equations and associated $B$- and $C$-capacities %J Sbornik. Mathematics %D 2023 %P 550-566 %V 214 %N 4 %U http://geodesic.mathdoc.fr/item/SM_2023_214_4_a3/ %G en %F SM_2023_214_4_a3
P. V. Paramonov; K. Yu. Fedorovskiy. Explicit form of fundamental solutions to certain elliptic equations and associated $B$- and $C$-capacities. Sbornik. Mathematics, Tome 214 (2023) no. 4, pp. 550-566. http://geodesic.mathdoc.fr/item/SM_2023_214_4_a3/
[1] M. Ya. Mazalov, “A criterion for uniform approximability of individual functions by solutions of second-order homogeneous elliptic equations with constant complex coefficients”, Mat. Sb., 211:9 (2020), 60–104 ; English transl. in Sb. Math., 211:9 (2020), 1267–1309 | DOI | MR | Zbl | DOI
[2] M. V. Keldyš (Keldysh), “On the solvability and stability of the Dirichlet problem”, Uspekhi Mat. Nauk, 1941, no. 8, 171–231 ; English transl. in Amer. Math. Soc. Transl. Ser. 2, 51, Amer. Math. Soc., Providence, RI, 1966, 1–73 | MR | Zbl | DOI
[3] N. S. Landkof, Foundations of modern potential theory, Nauka, Moscow, 1966, 515 pp. ; English transl., Grundlehren Math. Wiss., 180, Springer-Verlag, New York–Heidelberg, 1972, x+424 pp. | MR | Zbl | MR | Zbl
[4] P. V. Paramonov, “Uniform approximation of functions by solutions of strongly elliptic equations of second order on compact subsets of $\mathbb R^2$”, Mat. Sb., 212:12 (2021), 77–94 ; English transl. in Sb. Math., 212:12 (2021), 1730–1745 | DOI | MR | Zbl | DOI
[5] L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983, ix+391 pp. | DOI | MR | Zbl
[6] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge Univ. Press, Cambridge, 1985, xiii+561 pp. | DOI | MR | Zbl
[7] M. Ya. Mazalov, P. V. Paramonov and K. Yu. Fedorovskiy, “Conditions for $C^m$-approximability of functions by solutions of elliptic equations”, Uspekhi Mat. Nauk, 67:6(408) (2012), 53–100 ; English transl. in Russian Math. Surveys, 67:6 (2012), 1023–1068 | DOI | MR | Zbl | DOI
[8] A. O. Bagapsh, M. Ya. Mazalov and K. Yu. Fedorovskiy, “On the Dirichlet problem for not strongly elliptic second-order equations”, Uspekhi Mat. Nauk, 77:2(464) (2022), 197–198 ; English transl. in Russian Math. Surveys, 77:2 (2022), 372–374 | DOI | MR | Zbl | DOI
[9] R. Harvey and J. C. Polking, “A notion of capacity which characterizes removable singularities”, Trans. Amer. Math. Soc., 169 (1972), 183–195 | DOI | MR | Zbl
[10] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970, xiv+290 pp. | DOI | MR | Zbl
[11] M. Ya. Mazalov, “A criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations”, Mat. Sb., 199:1 (2008), 15–46 ; English transl. in Sb. Math., 199:1 (2008), 13–44 | DOI | MR | Zbl | DOI
[12] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 4th ed., Fizmatgiz, Moscow, 1963, 1100 pp. ; English transl., 4th ed., Academic Press, New York–London, 1965, xlv+1086 pp. | MR | Zbl | MR | Zbl