Regularization of distributions
Sbornik. Mathematics, Tome 214 (2023) no. 4, pp. 516-549 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sufficient conditions are presented for the construction of a regularization of a distribution in the form $a(\sigma)f$, where $f$ is a distribution and $a(\sigma)$ is an infinitely differentiable function outside a closed set $N$ which has power-like singularities of derivatives on $N$. Applications of such regularizations to an effective construction of solutions of the equation $Pu=f$, where $P(\sigma)$ is a polynomial, are considered. Bibliography: 14 titles.
Keywords: regularization of a distribution, manifold.
Mots-clés : multiplier
@article{SM_2023_214_4_a2,
     author = {A. L. Pavlov},
     title = {Regularization of distributions},
     journal = {Sbornik. Mathematics},
     pages = {516--549},
     year = {2023},
     volume = {214},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_4_a2/}
}
TY  - JOUR
AU  - A. L. Pavlov
TI  - Regularization of distributions
JO  - Sbornik. Mathematics
PY  - 2023
SP  - 516
EP  - 549
VL  - 214
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2023_214_4_a2/
LA  - en
ID  - SM_2023_214_4_a2
ER  - 
%0 Journal Article
%A A. L. Pavlov
%T Regularization of distributions
%J Sbornik. Mathematics
%D 2023
%P 516-549
%V 214
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2023_214_4_a2/
%G en
%F SM_2023_214_4_a2
A. L. Pavlov. Regularization of distributions. Sbornik. Mathematics, Tome 214 (2023) no. 4, pp. 516-549. http://geodesic.mathdoc.fr/item/SM_2023_214_4_a2/

[1] I. M. Gel'fand and G. E. Shilov, Generalized functions and operations with them, Generalized functions, 1, Fizmatgiz, Moscow, 1958, 440 pp. ; English transl., Generalized functions, v. I, Properties and operations, Academic Press, New York–London, 1964, xviii+423 pp. | MR | MR | Zbl

[2] A. I. Komech, “Linear partial differential equations with constant coefficients”, Partial differential equations II, Sovr. Probl. Mat. Fundam. Napravl., 31, VINITI, Moscow, 1988, 127–261 ; English transl. in Encyclopaedia Math. Sci., 31, Springer, Berlin, 1994, 121–255 | MR | Zbl | DOI | MR | Zbl

[3] A. L. Pavlov, “On regularization of a certain class of distributions”, Math. Nachr., 288:17–18 (2015), 2093–2108 | DOI | MR | Zbl

[4] J. F. Trèves, Lectures on linear partial differential equations with constant coefficients, Notas de Matemática, 27, Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro, 1961, xiv+317 pp. | MR | Zbl

[5] A. L. Pavlov, “Solvability of boundary value problems in a half-space for differential equations with constant coefficients in the class of tempered distributions”, Sibirsk. Mat. Zh., 54:4 (2013), 871–889 ; English transl. in Siberian Math. J., 54:4 (2013), 697–712 | MR | Zbl | DOI

[6] A. L. Pavlov, “The Cauchy problem for one equation of Sobolev type”, Mat. Tr., 21:1 (2018), 125–154 ; English transl. in Siberian Adv. Math., 29:1 (2019), 57–76 | DOI | MR | Zbl | DOI

[7] L. Hörmander, “On the division of distributions by polynomials”, Arkiv Mat., 3:6 (1958), 555–568 | DOI | MR | Zbl

[8] S. Łojasiewicz, “Sur le problème de la division”, Studia Math., 18 (1959), 87–136 | DOI | MR | Zbl

[9] B. Malgrange, Ideals of differentiable functions, Tata Inst. Fundam. Res. Stud. Math., 3, Tata Inst. Fundam. Res., Bombay; Oxford Univ. Press, London, 1967, vii+106 pp. | MR | Zbl

[10] A. L. Pavlov, “On the division problem for a tempered distribution that depends holomorphically on a parameter”, Sibirsk. Mat. Zh., 56:5 (2015), 1130–1141 ; English transl. in Siberian Math. J., 56:5 (2015), 901–911 | DOI | MR | Zbl | DOI

[11] A. L. Pavlov, “Division of a distribution by a polynomial”, Tr. Inst. Prikl. Mat. Mekh., 35 (2021), 49–66 (Russian)

[12] L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983, ix+391 pp. | DOI | MR | Zbl

[13] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970, xiv+290 pp. | MR | Zbl

[14] R. Narasimhan, Analysis on real and complex manifolds, Adv. Stud. Pure Math., 1, Masson Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam, 1968, x+246 pp. | MR | Zbl