Collocation approximation by deep neural ReLU networks for parametric and stochastic PDEs with lognormal inputs
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 4, pp. 479-515
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We find the convergence rates of the collocation approximation by deep ReLU neural networks of solutions to elliptic PDEs with lognormal inputs, parametrized by $\boldsymbol{y}$ in the noncompact set ${\mathbb R}^\infty$. The approximation error is measured in the norm of the Bochner space $L_2({\mathbb R}^\infty, V, \gamma)$, where $\gamma$ is the infinite tensor-product
standard Gaussian probability measure on ${\mathbb R}^\infty$ and $V$ is the energy space. We also obtain similar dimension-independent results in the case when the lognormal inputs are parametrized by ${\mathbb R}^M$ of very large dimension $M$, and the approximation error is measured in the $\sqrt{g_M}$-weighted uniform norm of the Bochner space $L_\infty^{\sqrt{g}}({\mathbb R}^M, V)$, where $g_M$ is the density function of the standard Gaussian probability measure on ${\mathbb R}^M$.
Bibliography: 62 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
high-dimensional approximation, collocation approximation, deep ReLU neural networks, parametric elliptic PDEs, lognormal inputs.
                    
                    
                    
                  
                
                
                @article{SM_2023_214_4_a1,
     author = {Dinh D\~{u}ng},
     title = {Collocation approximation by deep neural {ReLU} networks for parametric and stochastic {PDEs} with lognormal inputs},
     journal = {Sbornik. Mathematics},
     pages = {479--515},
     publisher = {mathdoc},
     volume = {214},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_4_a1/}
}
                      
                      
                    TY - JOUR AU - Dinh Dũng TI - Collocation approximation by deep neural ReLU networks for parametric and stochastic PDEs with lognormal inputs JO - Sbornik. Mathematics PY - 2023 SP - 479 EP - 515 VL - 214 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2023_214_4_a1/ LA - en ID - SM_2023_214_4_a1 ER -
Dinh Dũng. Collocation approximation by deep neural ReLU networks for parametric and stochastic PDEs with lognormal inputs. Sbornik. Mathematics, Tome 214 (2023) no. 4, pp. 479-515. http://geodesic.mathdoc.fr/item/SM_2023_214_4_a1/
