@article{SM_2023_214_4_a0,
author = {A. A. Zlotnik and B. N. Chetverushkin},
title = {Properties and errors of second-order parabolic and hyperbolic perturbations of a~first-order symmetric hyperbolic system},
journal = {Sbornik. Mathematics},
pages = {444--478},
year = {2023},
volume = {214},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2023_214_4_a0/}
}
TY - JOUR AU - A. A. Zlotnik AU - B. N. Chetverushkin TI - Properties and errors of second-order parabolic and hyperbolic perturbations of a first-order symmetric hyperbolic system JO - Sbornik. Mathematics PY - 2023 SP - 444 EP - 478 VL - 214 IS - 4 UR - http://geodesic.mathdoc.fr/item/SM_2023_214_4_a0/ LA - en ID - SM_2023_214_4_a0 ER -
%0 Journal Article %A A. A. Zlotnik %A B. N. Chetverushkin %T Properties and errors of second-order parabolic and hyperbolic perturbations of a first-order symmetric hyperbolic system %J Sbornik. Mathematics %D 2023 %P 444-478 %V 214 %N 4 %U http://geodesic.mathdoc.fr/item/SM_2023_214_4_a0/ %G en %F SM_2023_214_4_a0
A. A. Zlotnik; B. N. Chetverushkin. Properties and errors of second-order parabolic and hyperbolic perturbations of a first-order symmetric hyperbolic system. Sbornik. Mathematics, Tome 214 (2023) no. 4, pp. 444-478. http://geodesic.mathdoc.fr/item/SM_2023_214_4_a0/
[1] B. N. Chetverushkin, Kinetic schemes and quasi-gasdynamic system of equations, MAKS Press, Moscow, 2004, 328 pp. ; English transl., CIMNE, Barcelona, 2008, 298 pp. | Zbl
[2] T. G. Elizarova, Quasi-gasdynamic equations and methods for computation of viscous flows, Nauchnyi Mir, Moscow, 2007, 349 pp. (Russian); English transl., Quasi-gas dynamic equations, Springer, Berlin, 2008, xiv+286 pp. | DOI
[3] B. N. Chetverushkin, “Hyperbolic quasi-gasdynamic system”, Mat. Model., 30:2 (2018), 81–98 ; English transl. in Math. Models Comput. Simul., 10:5 (2018), 588–600 | MR | Zbl | DOI
[4] L. C. Evans, Partial differential equations, Grad. Stud. Math., 19, Amer. Math. Soc., Providence, RI, 1998, xviii+662 pp. | DOI | MR | Zbl
[5] J. D. Cole, Perturbation methods in applied mathematics, Blaisdell Publishing Co. [Ginn and Co.], Waltham, MA–Toronto, ON–London, 1968, vi+260 pp. | MR | Zbl
[6] J. Genet and M. Madaune, “Singular perturbations for a class of nonlinear hyperbolic-hyperbolic problems”, J. Math. Anal. Appl., 64:1 (1978), 1–24 | DOI | MR | Zbl
[7] L. R. Volevich and M. G. Dzhavadov, “Uniform bounds of solutions of hyperbolic equations with a small parameter multiplying the leading derivatives”, Differ. Uravn., 19:12 (1983), 2082–2090 ; English transl. in Differ. Equ., 19 (1983), 1516–1525 | MR | Zbl
[8] A. van Harten and R. R. van Hassel, “A quasi-linear, singular perturbation problem of hyperbolic type”, SIAM J. Math. Anal., 16:6 (1985), 1258–1267 | DOI | MR | Zbl
[9] S. Schochet, “Hyperbolic-hyperbolic singular limits”, Comm. Partial Differential Equations, 12:6 (1987), 589–632 | DOI | MR | Zbl
[10] H. O. Fattorini, “The hyperbolic singular perturbation problem: an operator theoretic approach”, J. Differential Equations, 70:1 (1987), 1–41 | DOI | MR | Zbl
[11] E. M. de Jager and F. Jiang, The theory of singular perturbations, North-Holland Ser. Appl. Math. Mech., 42, North-Holland Publishing Co., Amsterdam, 1996, xii+340 pp. | MR
[12] S. Mizohata, Henbidun hôteisiki ron [The theory of partial differential equations], Contemp. Math., 9, Iwanami Shoten, Tokyo, 1965, viii+462 pp. | MR
[13] S. K. Godunov, Equations of mathematical physics, 2nd revised and augmented ed., Nauka, Moscow, 1979, 391 pp. (Russian) ; French transl. of 1st ed., S. Godounov, Équations de la physique mathématique, Éditions Mir, Moscow, 1973, 452 pp. | MR | MR | Zbl
[14] S. Benzoni-Gavage and D. Serre, Multidimensional hyperbolic partial differential equations. First-order systems and applications, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, Oxford, 2007, xxvi+508 pp. | MR | Zbl
[15] S. M. Nikol'skiĭ, Approximation of functions of several variables and imbedding theorems, Nauka, Moscow, 1969, 480 pp. ; English transl., Grundlehren Math. Wiss., 205, Springer-Verlag, New York–Heidelberg, 1975, viii+418 pp. | MR | Zbl | DOI | MR | Zbl
[16] A. A. Zlotnik and B. N. Chetverushkin, “Parabolicity of the quasi-gasdynamic system of equations, its hyperbolic second-order modification, and the stability of small perturbations for them”, Zh. Vychisl. Mat. Mat. Fiz., 48:3 (2008), 445–472 ; English transl. in Comput. Math. Math. Phys., 48:3 (2008), 420–446 | MR | Zbl | DOI
[17] A. A. Zlotnik and B. N. Chetverushkin, “Stability of implicit difference schemes for a linearized hyperbolic quasi-gasdynamic system of equations”, Differ. Uravn., 56:7 (2020), 936–947 ; English transl. in Differ. Equ., 56:7 (2020), 910–922 | DOI | MR | Zbl | DOI
[18] A. A. Zlotnik and B. N. Chetverushkin, “On second-order parabolic and hyperbolic perturbations of a first-order hyperbolic system”, Dokl. Ross. Akad. Nauk. Mat. Inform. Protsessy Upr., 506 (2022), 9–15 ; English transl. in Dokl. Math., 106:2 (2022), 308–314 | DOI | Zbl | DOI
[19] H. O. Fattorini, “Singular perturbation and boundary layer for an abstract Cauchy problem”, J. Math. Anal. Appl., 97:2 (1983), 529–571 | DOI | MR | Zbl
[20] A. Z. Ishmukhametov, “Controllability of hyperbolic systems under singular perturbations”, Differ. Uravn., 36:2 (2000), 241–250 ; English transl. in Differ. Equ., 36:2 (2000), 272–284 | MR | Zbl | DOI
[21] T. E. Moiseev, E. E. Myshetskaya and V. F. Tishkin, “On the closeness of solutions of unperturbed and hyperbolized heat equations with discontinuous initial data”, Dokl. Ross. Akad. Nauk, 481:6 (2018), 605–609 ; English transl. in Dokl. Math., 98:1 (2018), 391–395 | DOI | Zbl | DOI | MR
[22] B. N. Chetverushkin and A. A. Zlotnik, “On a hyperbolic perturbation of a parabolic initial-boundary value problem”, Appl. Math. Lett., 83 (2018), 116–122 | DOI | MR | Zbl
[23] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva (Ural'tseva), Linear and quasi-linear equations of parabolic type, Nauka, Moscow, 1967, 736 pp. ; English transl., Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968, xi+648 pp. | MR | Zbl | DOI | MR | Zbl
[24] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Nauka, Moscow, 1973, 407 pp. ; English transl., Appl. Math. Sci., 49, Springer-Verlag, New York, 1985, xxx+322 pp. | MR | Zbl | DOI | MR | Zbl
[25] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, Textb. Math., 2nd rev. ed., CRC Press, Boca Raton, FL, 2015, xiv+299 pp. | MR | Zbl
[26] H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Math. Lehrbucher und Monogr., 38, Akademie-Verlag, Berlin, 1974, ix+281 pp. | MR | Zbl
[27] A. A. Zlotnik and B. N. Chetverushkin, “Spectral stability conditions for an explicit three-level finite-difference scheme for a multidimensional transport equation with perturbations”, Differ. Uravn., 57:7 (2021), 922–931 ; English transl. in Differ. Equ., 57:7 (2021), 891–900 | DOI | MR | Zbl | DOI
[28] J. Bergh and J. Löfström, Interpolation spaces. An introduction, Grundlehren Math. Wiss., 223, Springer-Verlag, Berlin–New York, 1976, x+207 pp. | DOI | MR | Zbl
[29] B. N. Chetverushkin and A. A. Zlotnik, “On some properties of multidimensional hyperbolic quasi-gasdynamic systems of equations”, Russ. J. Math. Phys., 24:3 (2017), 299–309 | DOI | MR | Zbl
[30] A. A. Zlotnik, Projection-difference methods for nonstationary problems with nonsmooth data, Kandidat Dissertation, Moscow State University, Moscow, 1979 (Russian)
[31] L. Tartar, An introduction to Sobolev spaces and interpolation spaces, Lect. Notes Unione Mat. Ital., 3, Springer, Berlin; UMI, Bologna, 2007, xxvi+218 pp. | DOI | MR | Zbl
[32] M. S. Agranovich, Sobolev spaces, their generalizations and elliptic problems in smooth and Lipschitz domains, Moscow Center of Continuous Mathematical Education, Moscow, 2013, 378 pp.; English transl., Springer Monogr. Math., Springer, Cham, 2015, xiii+331 pp. | DOI | MR | Zbl
[33] A. Zlotnik and T. Lomonosov, “$L^2$-dissipativity of the linearized explicit finite-difference scheme with a kinetic regularization for 2D and 3D gas dynamics system of equations”, Appl. Math. Lett., 103 (2020), 106198, 7 pp. | DOI | MR | Zbl
[34] A. A. Zlotnik and A. S. Fedchenko, “Properties of an aggregated quasi-gasdynamic system of equations for a homogeneous gas mixture”, Dokl. Ross. Akad. Nauk Mat. Inform. Protsessy Upr., 501 (2021), 31–37 ; English transl. in Dokl. Math., 104:3 (2021), 340–346 | DOI | Zbl | DOI | MR