Properties and errors of second-order parabolic and hyperbolic perturbations of a~first-order symmetric hyperbolic system
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 214 (2023) no. 4, pp. 444-478
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Cauchy problems are studied for a first-order multidimensional symmetric linear hyperbolic system of equations with variable coefficients and its singular perturbations that are second-order strongly parabolic and hyperbolic systems of equations with a small parameter $\tau>0$ multiplying the second derivatives with respect to $x$ and $t$. The existence and uniqueness of weak solutions of all three systems and $\tau$-uniform estimates for solutions of systems with perturbations are established. Estimates for the difference of solutions of the original system and the systems with perturbations are given, including ones of order $O(\tau^{\alpha/2})$ in the norm of $C(0,T;L^2(\mathbb{R}^n))$, for an initial function $\mathbf w_0$ in the Sobolev space $H^\alpha(\mathbb{R}^n)$, $\alpha=1,2$, or the Nikolskii space $H_2^{\alpha}(\mathbb{R}^n)$, $0\alpha2$, $\alpha\neq 1$, and under appropriate assumptions on the free term of the first-order system. For ${\alpha=1/2}$ a wide class of discontinuous functions $\mathbf w_0$ is covered. Estimates for derivatives of any order with respect to $x$ for solutions and of order $O(\tau^{\alpha/2})$ for their differences are also deduced. Applications of the results to the first-order system of gas dynamic equations linearized at a constant solution and to its perturbations, namely, the linearized second-order parabolic and hyperbolic quasi-gasdynamic systems of equations, are presented. 
Bibliography: 34 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
linear systems of partial differential equations, small parameter, linearized system of gas dynamic equations, quasi-gasdynamic systems of equations, estimates of the difference of solutions.
                    
                    
                    
                  
                
                
                @article{SM_2023_214_4_a0,
     author = {A. A. Zlotnik and B. N. Chetverushkin},
     title = {Properties and errors of second-order parabolic and hyperbolic perturbations of a~first-order symmetric hyperbolic system},
     journal = {Sbornik. Mathematics},
     pages = {444--478},
     publisher = {mathdoc},
     volume = {214},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2023_214_4_a0/}
}
                      
                      
                    TY - JOUR AU - A. A. Zlotnik AU - B. N. Chetverushkin TI - Properties and errors of second-order parabolic and hyperbolic perturbations of a~first-order symmetric hyperbolic system JO - Sbornik. Mathematics PY - 2023 SP - 444 EP - 478 VL - 214 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2023_214_4_a0/ LA - en ID - SM_2023_214_4_a0 ER -
%0 Journal Article %A A. A. Zlotnik %A B. N. Chetverushkin %T Properties and errors of second-order parabolic and hyperbolic perturbations of a~first-order symmetric hyperbolic system %J Sbornik. Mathematics %D 2023 %P 444-478 %V 214 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2023_214_4_a0/ %G en %F SM_2023_214_4_a0
A. A. Zlotnik; B. N. Chetverushkin. Properties and errors of second-order parabolic and hyperbolic perturbations of a~first-order symmetric hyperbolic system. Sbornik. Mathematics, Tome 214 (2023) no. 4, pp. 444-478. http://geodesic.mathdoc.fr/item/SM_2023_214_4_a0/
